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ABSTRACT

Aims. The aim of this study is to develop new analytical series representing lunar coordinates to accuracy compatible with the accuracy
of the modern numerical ephemeris of the Moon.
Methods. An improved method of spectral analysis of tabulated function is used to make harmonic development of the latest long-term
numerical ephemeris of the Moon LE-406 which covers a six thousand-year interval. A feature of the method is that the development
is made directly to Poisson series where both amplitudes and arguments of the series’ terms are high-degree polynomials of time.
Results. The new analytical development includes 42 270 Poisson series’ terms of minimal amplitude equivalent to 1 cm and is valid
over 1500–2500. A simplified version of the development includes 7952 series’ terms of minimal amplitude equivalent to 1 m and is
valid over 3000BC–3000AD. Over 1500–2500 the maximum difference between lunar coordinates calculated by means of the new
analytical series and numerical ephemeris LE-406 is 3.2 m in geocentric distance, 0.′′0056 in ecliptic longitude, and 0.′′0018 in ecliptic
latitude. This is 9–70 times better than the accuracy of the latest analytical theory of lunar motion ELP/MPP02, and the number of
terms in the new development is less than that in ELP/MPP02.
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1. Introduction

Lunar motion theory is a classical task of celestial mechanics. It
was a research topic dealt with by Newton, Clairaut, d’Alembert,
Euler, Lagrange, Laplace, Hansen, Adams, Delaunay, Andoyer,
Newcomb and others. Also important is the famous analyt-
ical theory by Hill & Brown (Hill 1878a,b,c; Brown 1897,
1899, 1905, 1908); for a long time the relevant tables (Brown
1919) were the basis for calculation of lunar coordinates. Recent
progress in computer technology and new requirements for ac-
curacy of lunar ephemeris stimulated further studies to improve
the Hill-Brown method and series (Eckert et al. 1954; Schmidt
1980) as well as on the development of new analytical theories of
lunar motion (Deprit et al. 1971a,b; Henrard 1979, 1980, 1981;
Chapront-Touzé & Chapront 1983, 1988; Chapront & Chapront-
Touzé 1997; Bidart 2001; Chapront et al. 2002; Chapront &
Francou 2003).

At the same time, numerical ephemerides of the Moon
have been successfully developed; among them the most recent
and accurate are the ephemerides of DE/LE-series done at the
Jet Propulsion Laboratory (JPL), USA (Standish & Williams
1981; Standish et al. 1995; Standish 1998, 2003a,b, 2006),
the ephemerides of the EPM-series done at Russian Institute
of Applied Astronomy (Krasinsky 2002; Pitjeva 2001, 2003,
2005) and the ephemerides of INPOP-series done at IMCCE-
Observatoire de Paris, France (Fienga et al. 2006). Currently,
the accuracy of the above-mentioned numerical ephemerides of
the Moon is better than that of available analytical theories of
lunar motion, but an important advantage of the latter is their
compactness and computer platform independence which is im-
portant in many practical applications. In particular, JPL-based

� Tables 6–11 are only available in electronic form at the CDS via
anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/471/1069

numerical ephemerides of the Moon and planets have been re-
cently replaced with analytical motion theories of these bodies
within all key elements of ground software systems used for
Hubble Space Telescope (HST) mission support (McCuttcheon
2003). For this purpose the HST personnel chose the analyti-
cal theory of lunar motion ELP2000-82B (Chapront-Touzé &
Chapront 1983) and the “planetary series 1996” (Chapront &
Francou 1996) representing planetary ephemerides by Poisson
series. According to HST tests, the selected analytical mo-
tion theories reproduce the modern numerical planetary/lunar
ephemerides DE/LE-405/406 (Standish 1998) to an accuracy of
at least 0.′′008 for all major planets (which meets all require-
ments for the mission support), and to an accuracy of 0.′′5 for
the Moon. The main reason of the relatively low accuracy ob-
tained for the Moon is that ELP2000-82B theory is adjusted to
an old version of numerical lunar ephemeris, LE-200 (Standish
& Williams 1981). (Recently Chapront & Francou (2003) de-
veloped a new analytical theory of lunar motion, ELP/MPP02,
which is adjusted to LE-405/406, but coefficients of the theory
are not published yet).

Along with construction of purely analytical (or semi-
analytical) theories of lunar motion and development of purely
numerical lunar ephemeris a combined approach can be used.
This is a spectral analysis of values for lunar coordinates pre-
calculated with a small sampling step on the basis of the latest
long-term numerical ephemeris of the Moon. The form of the
resulting series is very similar to that given by the modern an-
alytical theories of lunar motion and keeps all the advantages
of the latter, and the series accuracy proves to be compatible
with the accuracy of the source numerical ephemeris. Note that
a similar approach was used by Chapront (1995, 2000) in his
improvement of analytical planetary theories. However, a typi-
cal disadvantage of any spectral method is the well-known prob-
lem of “close frequencies” which can only be resolved by in-
creasing the time interval over which the analysis is done. We
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thus evolved a new modification of the spectral analysis method
which allowed us to perform harmonic development of the lat-
est long-term numerical ephemeris of the Moon LE-406 over six
thousand years (the complete time interval covered by LE-406).
The feature of the method is that the development is directly
made to Poisson series where both amplitudes and arguments of
the series’ terms are high-degree polynomials of time as opposed
to the classical Fourier analysis where the terms’ amplitudes and
frequencies are constants. This approach leads to an essential
improvement in accuracy of harmonic development of a func-
tion tabulated over a long-term interval and to reduction of the
series’ length. The details of the method are given in the next
section (see also Kudryavtsev 2004).

2. Spectral analysis to Poisson series

Let f (t) be an arbitrary function tabulated by its numerical values
over an interval of time [−T, T ] with a small sampling step.

Over the same interval we will build an analytical represen-
tation of the function by a finite h-order Poisson series of the
following form

f (t) ≈
N∑

k=1

[(
Ac

k0 + Ac
k1t + · · · + Ac

khth
)

cosωk(t)

+
(
As

k0 + As
k1t + · · · + As

khth
)

sinωk(t)
]

(1)

where Ac
k0, . . . , A

s
kh are constants and ωk(t) are some pre-defined

arguments which are assumed to be q-degree polynomials of
time t

ωk(t) = νkt + νk2t2 + · · · + νkqtq. (2)

For this we find the projections of f (t) on a basis generated by
functions

ckl(t) ≡ tl cosωk(t), skl(t) ≡ tl sinωk(t) (3)

(k = 1, 2, · · · ,N; l = 0, 1, · · · , h)

through numerical computation of the following scalar products

Ac
kl = 〈 f , ckl〉 ≡ 1

2T

∫ T

−T
f (t)tl cosωk(t)χ(t) dt, (4)

As
kl = 〈 f , skl〉 ≡ 1

2T

∫ T

−T
f (t)tl sinωk(t)χ(t) dt (5)

by using the definition

〈 f , g〉 ≡ 1
2T

∫ T

−T
f (t)ḡ(t)χ(t) dt (6)

where ḡ is the complex conjugate to the g function and χ(t) =
1 + cos π

T t is the Hanning filter chosen as the weight function
following suggestions by Laskar et al. (1992), Laskar (1993).
The proper choice of arguments ωk(t) depends on the specific
task (e.g. they can be multipliers of Delaunay variables and/or
planetary mean longitudes, etc.).

However, the basis functions ck1l1 , sk1l1 , ck2l2 , sk2l2 , . . . are
not usually orthogonal. We thus have to perform an orthogonal-
ization process over the expansion coefficients to improve the
quality of representation (1) and avoid superfluous terms. For
this procedure we used the algorithm developed by Šidlichovský
& Nesvorný (1997). Expressions (7)–(14) present a minimal al-
gorithm which we have generalized as indicated below.

Let f (t) be a tabulated complex function and let {ei}i=1,2,···,M
be a set of M basis functions [in our study equal to the complete
set of ckl(t), skl(t) so that M = 2×N× (h + 1)]. The function f (t)
is developed in the basis {e} as

f (t) =
M∑

i=1

A(M)
i ei + fM(t) (7)

where A(M)
i is a coefficient at ei after expanding f (t) over M basis

functions, and fM(t), the difference between the original function
and its approximation by M terms, proves to be minimal. Let us
define the projections Fi ≡ 〈 fi−1, ei〉 and Qi j ≡ 〈ei, e j〉. The orig-
inal algorithm by Šidlichovský & Nesvorný (1997) employs a
certain normalized basis {e} where the latter scalar product

(
Qi j

)
is always a real-valued function. We expand their result to the
case of an arbitrary non-normalized basis {e} where Qi j can take
complex values as well.

Thus coefficients A(M)
i are iteratively calculated as follows.

At the first step

α11 =
1√
Q11

, A(1)
1 = α

2
11F1, f1(t) = f0(t) − A(1)

1 e1 (8)

where f0(t) ≡ f (t) and αi j are hereafter some calculated complex
constants.

At the mth step, for every j = 1, 2, · · · ,m−1 we compute the
following complex coefficients:

B(m)
j = −

j∑
s=1

ᾱ jsQms, (9)

αmm =

⎛⎜⎜⎜⎜⎜⎜⎝Qmm −
m−1∑
s=1

B̄(m)
s B(m)

s

⎞⎟⎟⎟⎟⎟⎟⎠
− 1

2

(10)

(by construction the coefficient αmm takes on a real value for
every m),

αm j = αmm

m−1∑
s= j

B(m)
s αs j, (11)

A(m)
m = α2

mmFm, (12)

A(m)
j = A(m−1)

j + αmmαm jFm, (13)

fm(t) = fm−1(t) − αmmFm

m∑
i=1

αmiei (14)

where ᾱ js and B̄(m)
s are complex conjugate values of the relevant

quantities.
For the selected basis (3) the projections Fi ≡ 〈 fi−1, ei〉

are numerically calculated according to expressions (4)–(5). The
values for scalar products of the basis functions Qi j ≡ 〈ei, e j〉 can
be found analytically through the following steps.

Step 1. As far as trigonometric functions can be represented
in exponential form, we shall further deal with definite integrals
of the form

In(ν) ≡ 1
2T

∫ T

−T
tneiνt

(
1 + cos

π

T
t
)

dt = Ia
n(ν) + Ib

n(ν) + Ic
n(ν) (15)
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where i ≡ √−1 and

Ia
n (ν) ≡ 1

2T

∫ T

−T
tneiνtdt, (16)

Ib
n (ν) ≡ 1

4T

∫ T

−T
tnei(ν+ π

T )tdt, (17)

Ic
n(ν) ≡ 1

4T

∫ T

−T
tnei(ν− π

T )tdt. (18)

It is easy to find

Ia
n (0) = 2Ib

n

(
− π

T

)
= 2Ic

n

(
π

T

)
=

{
0 if n is odd

T n

n+1 if n is even. (19)

Otherwise, if n = 0

Ia
0 (ν) =

sin(νT )
νT

, (20)

Ib
0 (ν) = − sin(νT )

2(νT + π)
, (21)

Ic
0(ν) = − sin(νT )

2(νT − π)
· (22)

If n ≥ 1 we calculate the integrals iteratively

Ia
n (ν) =

i
νT

(
TnIa

n−1 − T nψ(ν)
)
, (23)

Ib
n (ν) =

i
νT + π

(
TnIb

n−1 +
1
2

T nψ(ν)

)
, (24)

Ic
n(ν) =

i
νT − π

(
TnIc

n−1 +
1
2

T nψ(ν)

)
(25)

where

ψ(ν) =

{
cos νT if n is odd

i sin νT if n is even. (26)

Step 2. We partially expand the exponential function of the ar-
gument (2) to a power series of t by assuming smallness of the
second and further items in the right-hand side of expression (2)
with respect to the first term. (In particular, it is true for Delaunay
variables, planetary mean longitudes and many other expansion
functions of celestial mechanics.) This task can easily be per-
formed by means of a computer algebra system (we have used
MAPLE V program package by Waterloo Maple Software). The
result is as follows (where the maximal degree of the polynomial
argument, q, has been restricted to a value of 4, although similar
expansions can be obtained for any value of degree q)

ei(νt+ν2t2+ν3t3+ν4t4)=eiνt
[
1 + iν2t2+iν3t3 +

(
iν4 − 1

2
ν2

2

)
t4 + · · ·

]
· (27)

In our study we obtain the expansion (27) up to the terms pro-
portional to t24. We then define a new integral function of a poly-
nomial argument ω(t) as

Jn(ω) ≡ 1
2T

∫ T

−T
tnei(νt+ν2t2+ν3t3+ν4t4)

(
1 + cos

π

T
t
)

dt. (28)

By combining expressions (15) and (27) we can write

Jn(ω) = In(ν) + iν2In+2(ν) + iν3In+3(ν)

+

(
iν4 − 1

2
ν2

2

)
In+4(ν) + · · · (29)

Step 3. We expand trigonometric functions to exponential ones,
and then the required scalar products can be calculated as

〈ck1l1 , sk2l2〉 =
1

2T

∫ T

−T
tl1+l2

(eiωk1 + e−iωk1

2

)(eiωk2 − e−iωk2

2i

)

×
(
1 + cos

π

T
t
)

dt

=
1
4i

[
−Jl1+l2 (ωk1 − ωk2 ) − Jl1+l2 (−ωk1 − ωk2 )

+Jl1+l2 (ωk1 + ωk2 ) + Jl1+l2 (−ωk1 + ωk2 )
]
, (30)

and analogously

〈sk1l1 , ck2l2〉 =
1
4i

[
Jl1+l2 (ωk1 − ωk2 ) − Jl1+l2 (−ωk1 − ωk2 )

+Jl1+l2 (ωk1 + ωk2 ) − Jl1+l2 (−ωk1 + ωk2 )
]
, (31)

〈sk1l1 , sk2l2〉 =
1
4

[
Jl1+l2 (ωk1 − ωk2 ) − Jl1+l2 (−ωk1 − ωk2 )

−Jl1+l2 (ωk1 + ωk2 ) + Jl1+l2 (−ωk1 + ωk2 )
]
, (32)

〈ck1l1 , ck2l2〉 =
1
4

[
Jl1+l2 (ωk1 − ωk2 ) + Jl1+l2 (−ωk1 − ωk2 )

+Jl1+l2 (ωk1 + ωk2 ) + Jl1+l2 (−ωk1 + ωk2 )
]
. (33)

This is a modification of the spectral analysis method allowing
expansion of a tabulated function to Poisson series with the ar-
guments being high-degree polynomials of time.

3. Expansion form of lunar coordinates

The formalism described in the previous section has been ap-
plied to accurate harmonic development of the numerical lunar
ephemeris LE-405/406. As a set of variables describing the po-
sition of the Moon in space we chose spherical coordinates of
its centre: r (geocentric distance), V (ecliptic longitude reck-
oned along the moving ecliptic from the mean equinox of epoch)
and U (ecliptic latitude reckoned from the moving ecliptic). The
same variables are used in all modern ELP-theories of lunar
motion (although the ELP-theories use a different origin of the
ecliptic longitude V).

On the base of LE-406 numerical lunar ephemeris, we calcu-
lated daily values for spherical coordinates of the Moon r, V , U
over 3000BC–3000AD (the complete time interval covered by
LE-406). We then performed a spectral analysis of the tabulated
values using the method presented in the previous section. As a
result, the geocentric spherical coordinates of the Moon r, V , U
are represented by Poisson series of the following form

r(t) =
Nr∑

k=1

[
A(r)

k0 cos
(
ω(r)

k (t) + ϕ(r)
k0

)
+ A(r)

k1 t cos
(
ω(r)

k (t) + ϕ(r)
k1

)

+A(r)
k2 t2 cos

(
ω(r)

k (t) + ϕ(r)
k2

)]
, (34)
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V(t) = V̄(t) +
NV∑
k=1

[
A(V)

k0 sin
(
ω(V)

k (t) + ϕ(V)
k0

)

+A(V)
k1 t sin

(
ω(V)

k (t) + ϕ(V)
k1

)
+A(V)

k2 t2 sin
(
ω(V)

k (t) + ϕ(V)
k2

)]
, (35)

U(t) =
NU∑
k=1

[
A(U)

k0 sin
(
ω(U)

k (t) + ϕ(U)
k0

)

+A(U)
k1 t sin

(
ω(U)

k (t) + ϕ(U)
k1

)
+A(U)

k2 t2 sin
(
ω(U)

k (t) + ϕ(U)
k2

)]
(36)

where

V̄(t) = 218.◦31664563+ 17325643723.′′0470t − 527.′′90t2

+6.′′665t3 − 0.′′5522t4 (37)

is the mean longitude of the Moon referred to the moving eclip-
tic and mean equinox of epoch (Simon et al. 1994); t is here-
after TDB measured in thousands of Julian years (365250d)
from J2000.0 (JD2451545.0); ωk(t) are time polynomial argu-
ments, and Aki, ϕki are, respectively, the terms’ amplitudes and
some additional constants (i = 0, 1, 2, i.e. the maximum order
of the Poisson series in our development is chosen equal to 2).
The algorithm of spectral analysis of a tabulated function to
Poisson series suggested in the previous section works for any
assigned order of the series, but a limitation here is the time in-
terval over which the function is tabulated (numerical tests prove
that expanding a function tabulated over a relatively small in-
terval of time to high-order Poisson series leads to strong cor-
relation between amplitudes of different Poisson terms of the
same frequency and does not improve the quality of the devel-
opment). It is difficult to estimate the right order of the series in
advance, so in the present study we restricted the maximum or-
der of Poisson series for the lunar coordinates to 2 following the
similar form of the ELP-solutions. Indeed, a further analysis of
differences between the lunar coordinates given by the final ex-
pansions (34)–(37) and by the complete LE-405/406 numerical
ephemeris did not reveal any systematic residuals which would
indicate a higher order of Poisson series is necessary for repre-
senting lunar coordinates over the considered six thousand-year
interval.

The arguments ωk(t) in expansions (34)–(36) are defined as
follows. First, from Simon et al. (1994) we took fourth-degree
time polynomial expressions for the mean longitude of the as-
cending node of the Moon Ω (referred to the mean ecliptic and
equinox of J2000.0), for Delaunay variables D, l′, l, F (mean
elongation of the Moon from the Sun, mean anomaly of the
Sun, mean anomaly of the Moon, and mean longitude of the
Moon subtracted by Ω, respectively), for mean longitudes of the
eight major planets (referred to the mean ecliptic and equinox of
J2000.0), and for the general precession in longitude pA (based
on Williams et al. 1991)

Ω = 125.◦04455501− 69679193.′′631t + 636.′′02t2

+7.′′625t3 − 0.′′3586t4, (38)

D = 297.◦85019547+ 16029616012.′′090t − 637.′′06t2

+6.′′593t3 − 0.′′3169t4, (39)

l′ = 357.◦52910918+ 1295965810.′′481t − 55.′′32t2

+0.′′136t3 − 0.′′1149t4, (40)

l = 134.◦96340251+ 17179159232.′′178t + 3187.′′92t2

+51.′′635t3 − 2.′′4470t4, (41)

F = 93.◦27209062+ 17395272628.′′478t − 1275.′′12t2

−1.′′037t3 + 0.′′0417t4, (42)

λMe = 252.◦25090552+ 5381016286.′′88982t

−1.′′92789t2 + 0.′′00639t3, (43)

λVe = 181.◦97980085+ 2106641364.′′33548t

+0.′′59381t2 − 0.′′00627t3, (44)

λEa = 100.◦46645683+ 1295977422.′′83429t

−2.′′04411t2 − 0.′′00523t3, (45)

λMa = 355.◦43299958+ 689050774.′′93988t

+0.′′94264t2 − 0.′′01043t3, (46)

λJu = 34.◦35151874+ 109256603.′′77991t − 30.′′60378t2

+0.′′05706t3 + 0.′′04667t4, (47)

λS a = 50.◦07744430+ 43996098.′′55732t + 75.′′61614t2

−0.′′16618t3 − 0.′′11484t4, (48)

λUr = 314.◦05500511+ 15424811.′′93933t − 1.′′75083t2

+0.′′02156t3, (49)

λNe = 304.◦34866548+ 7865503.′′20744t + 0.′′21103t2

−0.′′00895t3, (50)

pA = 50288.′′200t + 111.′′2022t2 + 0.′′0773t3 − 0.′′2353t4. (51)

Every argument ωk(t) in expansions (34)–(36) is a linear com-
bination of integer multipliers of expressions (38)–(51). Given
that Delaunay variables are only defined by fourth-degree time
polynomials, we have truncated the original expressions for
λMe, · · · , λNe and pA to the same level of accuracy in our study.
To select the set of arguments we preliminarily evaluated the
spectrum of the tabulated numerical values of r,V,U at numer-
ous combinations of integer multipliers of basic frequencies of
expressions (38)–(51) by using the classical Fourier analysis (at
this stage all the frequencies were cut to linear functions of time).
Here we considered all combinations of the multipliers where
the latter run within certain limits. The wider the limits are the
more combinations can be taken into consideration, but based
on our computer efficiency we ultimately chose the following
maximum ranges:

– from –6 to 6 – for multipliers of Delaunay variables and of
the mean longitude of the lunar ascending node;

– from –20 to 20 – for multipliers of the planetary mean longi-
tudes;

– from –4 to 4 – for multipliers of the general precession in
longitude.
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To accelerate the evaluation process the Fast Fourier
Transformation (FFT) of the data arrays at the frequencies
specially defined by the FFT was made first. The approximate
amplitude of a spectrum’s wave at every considered combination
of the basic frequencies was then found through interpolating
the results of FFT. This method is inspired by studies by Laskar
et al. (1992), Laskar (1993), where the authors used interpolat-
ing of the FFT results to find the fundamental frequencies of a
dynamical system. Subsequently, we made improved spectral
analysis of the original data arrays at all combinations of fre-
quencies for which the preliminary (FFT) amplitude exceeded
or was equal to a pre-set minimal level (equivalent to 1 cm in our
study). This was done by using expressions (4)–(33) to account
for the fourth-degree polynomial form of arguments ωk(t). We
emphasize that when making the improved spectral analysis we
only use the time-dependent part of argumentsωk(t) of form (2),
but when calculating the lunar coordinates by means of expan-
sions (34)–(37) the complete expressions (38)–(51) (incl. the
free terms) should be used to obtain the arguments ωk(t). The
constants ϕki in expressions (34)–(36) are calculated so as to
off-set the effect of those free terms as well as account for the
additional phases resulting from transformation of the original
series of form (1) to series with a single trigonometric function.

Transformation of lunar rectangular coordinates from the
reference frame of LE-405/406 (defined by the mean geoequa-
tor and equinox of J2000.0) to the reference frame defined by the
moving ecliptic and mean equinox of epoch has been done with
use of the following precession quantities (Simon et al. 1994)

θA = 20042.′′0207t − 42.′′6566t2 − 41.′′8238t3

−0.′′0731t4 − 0.′′0127t5 + 0.′′0004t6, (52)

ζA = 23060.′′9097t + 30.′′2226t2 + 18.′′0183t3

−0.′′0583t4 − 0.′′0285t5 − 0.′′0002t6, (53)

zA = 23060.′′9097t + 109.′′5270t2 + 18.′′2667t3

−0.′′2821t4 − 0.′′0301t5 − 0.′′0001t6, (54)

εA = 23◦26′21.′′412 − 468.′′0927t − 0.′′0152t2

+1.′′9989t3 − 0.′′0051t4 − 0.′′0025t5. (55)

Although such a transformation does not completely meet the
present recommendations on precession quantities (Capitaine
et al. 2003; McCarthy & Petit 2003) we prefer the formu-
lae (52)–(55) because they are highly consistent with the other
expressions (37)–(51) taken from the same source (Simon et al.
1994). In fact, the use of the precession quantities (52)–(55) does
not decrease the accuracy of calculations, because one needs
only to employ the same formulae (52)–(55) to transform lunar
coordinates referred to the moving ecliptic and mean equinox of
epoch (obtained by means of analytical expansions (34)–(37)) to
the LE-405/406 reference plane.

The characteristics of the new harmonic development of lu-
nar coordinates r,V,U are given in the following section.

4. Harmonic development of lunar ephemeris
LE-405/406

There are two versions of the new Poisson series representing
the geocentric ecliptic spherical coordinates of the Moon r,V,U.
The complete solution, LEA-406a, includes 42270 terms of
minimal amplitude equivalent to 1 cm and is valid over

Table 1. Harmonic development of lunar ephemeris LE-405/406 over
1500–2500 (complete solution LEA-406a).

Coor- Minimum Number Maximum error over
dinate amplitude of terms 1900–

2100
1600–
2200

1500–
2500

r 1 cm 10704 1.7 m 2.5 m 3.2 m
V 0.′′0000055 19116 0.′′0038 0.′′0045 0.′′0056
U 0.′′0000055 12450 0.′′0013 0.′′0018 0.′′0018

Table 2. Harmonic development of lunar ephemeris LE-405/406 over
3000BC–3000AD (simplified solution LEA-406b).

Coor- Minimum Number Maximum error over
dinate amplitude of terms 3000BC–3000AD

r 1 m 1996 0.20 km
V 0.′′00055 3770 0.′′42
U 0.′′00055 2186 0.′′33

1500–2500. The simplified solution, LEA-406b, includes 7952
terms of minimal amplitude equivalent to 1 m and is valid over
3000BC–3000AD.

Tables 1, 2 present characteristics of both solutions. For ev-
ery coordinate we give the total number of non-zero trigono-
metric and Poisson terms in the relevant expression ((34), (35)
or (36)). The value of minimum amplitude for Poisson terms
corresponds to the maximum range of the terms’ amplitude at
the ends of the interval of time where the solution is valid.
The value of maximum error stands for the maximum devia-
tion between the lunar coordinates calculated by means of the
new analytical development LEA-406 and lunar coordinates pro-
vided by the numerical ephemeris LE-405/406 at every 0.1 days
within the considered interval of time. We made a compari-
son with the ephemeris LE-405 over the time intervals 1900–
2100 and 1600–2200 and a comparison with the ephemeris LE-
406 over the time intervals 1500–2500 and 3000BC–3000AD.
(The ephemeris LE-405 is formally more accurate than LE-406,
but covers a shorter time interval, 1600–2200; the ephemeris
LE-406 is an extension of LE-405 over the interval of time
3000BC–3000AD.)

Figure 1 shows the differences between the lunar coordinates
r,V,U calculated by means of the latest long-term numerical
ephemeris LE-406 and by the complete harmonic development
LEA-406a over 1500–2500.

Figure 2 demonstrates how the accuracy of calculation of
lunar coordinates r,V,U over 1500–2500 depends on the number
of terms taken from LEA-406a series.

The main terms of LEA-406a series are presented in
Tables 3–5. The complete LEA-406 harmonic development of
the lunar ephemeris LE-405/406 is given in Tables 6–11 only
available in electronic form at the CDS.

5. Comparison of LEA-406 harmonic development
with ELP/MPP02 analytical theory

LEA-406, the new harmonic development of lunar ephemeris,
and ELP/MPP02 (Chapront & Francou 2003), the modern an-
alytical theory of lunar motion, are both adjusted to the lat-
est long-term numerical ephemeris of the Moon LE-405/406
(Standish 1998) which is recommended for use by the current
IERS Conventions (McCarthy & Petit 2003). Both solutions are
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Fig. 1. Differences between lunar coordinates given by numerical
ephemeris LE-406 and by analytical series LEA-406a over 1500–2500.

Fig. 2. Dependence of LEA-406a accuracy on the number of series’
terms.

expansions of the geocentric ecliptic spherical coordinates of the
Moon r,V,U to Poisson series where amplitudes of the series’
terms are second-order polynomials of time, and their arguments
are polynomials of the fourth degree of time.

For quantitative comparison of LEA-406 harmonic develop-
ment with ELP/MPP02 lunar motion theory we give character-
istics of the latter in Table 12 (following Chapront & Francou
2003).

When comparing the characteristics of the two analyti-
cal representation of lunar ephemeris given in Tables 1, 2 and
in Table 12 one sees that the accuracy of the new harmonic

Table 3. The main terms of LEA-406a harmonic development of lunar
geocentric distance r.

Argument Period A(r)
0 A(r)

1 A(r)
2

l l′ F D [d] [km] [km/th.y] [km/(th.y)2]

0 0 0 0 – 385000.539 0.023 0.000
1 0 0 0 27.55 20905.345 0.178 5.103
–1 0 0 2 31.81 3699.161 0.083 1.157
0 0 0 2 14.77 2955.984 0.137 1.626
2 0 0 0 13.78 569.925 0.010 0.279
–2 0 0 2 205.89 246.161 0.007 0.023
0 –1 0 2 15.39 204.590 5.139 0.205
1 0 0 2 9.61 170.734 0.012 0.137
–1 –1 0 2 34.85 152.142 3.824 0.132
–1 1 0 0 29.80 129.625 3.265 0.111
0 0 0 1 29.53 108.747 0.001 0.029
1 1 0 0 25.62 104.759 2.639 0.082

Table 4. The main terms of LEA-406a harmonic development of lunar
ecliptic longitude V .

Argument Period A(V)
0 A(V)

1 A(V)
2

l l′ F D [d] [′′] [′′/th.y] [′′/(th.y)2]

1 0 0 0 27.55 22 639.586 0.191 5.530
–1 0 0 2 31.81 4586.495 0.112 1.481
0 0 0 2 14.77 2369.929 0.105 1.316
2 0 0 0 13.78 769.025 0.013 0.373
0 1 0 0 365.26 666.439 16.765 0.510
0 0 2 0 13.61 411.595 0.003 0.176

–2 0 0 2 205.89 211.657 0.007 0.019
–1 –1 0 2 34.85 205.443 5.164 0.191
1 0 0 2 9.61 191.957 0.012 0.154
0 –1 0 2 15.39 164.732 4.138 0.168

–1 1 0 0 29.80 147.327 3.710 0.122
0 0 0 1 29.53 124.994 0.001 0.034
1 1 0 0 25.62 109.384 2.756 0.084
0 0 –2 2 173.31 55.178 0.003 0.007

Table 5. The main terms of LEA-406a harmonic development of lunar
ecliptic latitude U.

Argument Period A(U)
0 A(U)

1 A(U)
2

l l′ F D [d] [′′] [′′/th.y] [′′/(th.y)2]

0 0 1 0 27.21 18 461.241 0.062 3.965
1 0 1 0 13.69 1010.168 0.005 0.456
1 0 –1 0 2190.35 999.694 0.012 0.028
0 0 –1 2 32.28 623.656 0.028 0.210

–1 0 1 2 14.67 199.486 0.005 0.107
–1 0 –1 2 188.20 166.576 0.004 0.021
0 0 1 2 9.57 117.262 0.005 0.089
2 0 1 0 9.15 61.912 0.001 0.044

development LEA-406 is better than that of ELP/MPP02 ana-
lytical theory over both short-term and long-term intervals. Over
a one thousand-year interval centered at J2000.0 (1500–2500)
the gain in accuracy is from a factor of 9 to a factor of 70 (de-
pending on the coordinate). The total number of terms included
to the new harmonic development of lunar ephemeris is 42 270
in its complete version (LEA-406a) and 7952 in its simplified
version (LEA-406b) vs. 45 053 terms composing the analytical
lunar motion theory ELP/MPP02.
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Table 12. Expansion of lunar coordinates in ELP/MPP02 theory.

Coor- Minimum Number Maximum error over
dinate amplitude of terms 1950–

2060
1500–
2500

3000BC–
2500AD

r 1 cm 18 097 2.4 m 29 m 1.4 km
V 0.′′00001 17 178 0.′′006 0.′′40 2.′′4
U 0.′′00001 9778 0.′′0018 0.′′034 0.′′5
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