
The Renormalization-Group method 

A solid or liquid material may undergo a dramatic change in its properties depending on critical values of 

external parameters like temperature or pressure. A magnet for example loses its permanent 

magnetization at the so-called Curie-point. The materials behavior near such a critical point can be 

quantitatively described by a mathematical technique, called the Renormalization-Group method. It was 

originally introducing in quantum-field-theory, and later adapted to problems of statistical physics and 

condensed matter. 

Here we demonstrate this technique by a simple example, the percolation-problem. 

Hot water poured into a coffee-filter filled with ground coffee percolates through the coffee-powder and 

the filter until it drips out into the cup. Another example is electric current “percolating” through a 

random network.  

Let us assume a regular grid of insulating points. If we now put circular copper disks like coins onto those 

grid-points, which are slightly larger than the distance between the grid-points, then electricity can flow 

through these copper-discs from one side of the grid to the other. Obviously, if only a very small number 

of grid-points at random carry a copper-disc, electricity cannot flow through the system. This is only 

possible from a certain critical coverage on, the percolation point. Increasing the probability of coverage 

from very small values to its critical value, two-dimensional clusters of electrically conducting grid-point 

will appear at increasing size, until at the percolation point one cluster of infinite size exists, allowing the 

current to go through the whole system. The diameter of a typical cluster is called the correlation length, 

which goes to infinity when the percolation point is reached. 

The renormalization-group idea is, to replace a group of neighboring conducting sites by a single 

conducting site, and then rescale the lengths of the system accordingly. So if one replaces N neighboring 

conducting sites by just one site, then in 2 dimensions the lengths have to be changed by a factor N
1/2

 

which is square-root of N. Imagine to sit inside a helicopter and look down onto the grid. The 

renormalization-process corresponds to increasing the height of the helicopter above ground. At low 

coverage of the grid with conducting discs the visible clusters become smaller and smaller as the 

helicopter climbs, and ultimately it appears like a non-conducting grid. But at the critical percolation 

point, where the cluster-size has become infinite, the picture from above always looks approximately the 

same no matter how high the helicopter has climbed.  

This process is illustrated by the following images which also gives a renormalization-group-calculation 

for the dependence of the correlation-length  upon the probability of coverage P. (The calculation here 

is “very good” but not “rigorous”, since the definition of “percolation” for three neighboring points is 

very plausible but not rigorous, which would require to take much larger clusters into account).  



Percolation

Percolation on Triangular Lattice

Probability P that a blue grid-point is occupied by a red
circle here is P = 14/52 = 0.269



Renormalization of Percolation

~            3                   2
       P   =  P    +   3  P    ( 1 - P )   

Percolation-Probability for one Triangle

P̃ is the new effective probability after reducing the number
of grid-points by three to one.



Renormalization Group

Example: Percolation
P = probability, that one point is percolating
P̃ = probability, that a triangle is percolating
ξ = diameter of typical percolation-cluster

Renormalize one triangle to one point:
P̃ = P 3 + 3P 2(1 − P )

The compression of 3 points in the plane to 1 point is a
compression of the area by a factor 3. This is a change in
length scale by b =

√
3.

Renormalization-group transformation:
P̃ = R(P ); ξ̃ = ξ / b

Fixed-point: P̃ = P = Pc = 1/2 (and at 0,1).

The correlation-length ξ goes to infinity as P → Pc.
Critical exponent ν (definition): ξ ≈ 1/|P − Pc|ν
This gives ξ/ξ̃ = |(P̃ − Pc)/(P − Pc)|ν
and in numbers:

√
3 = (3/2)ν, since near Pc we have the

linearized renormalization transform:
P̃ = R(P ) ≈ Pc + (3/2)(P − Pc).

The critical exponent ν therefore is:
ν = log(

√
3)/log(3/2) = 1.3547



Renormalization and Correlation Length

0

ξ

1

0

1

P
~

P

point

fixed

P
C

ξ ∼ 1/|P − Pc|ν with ν ≈ 1.354 is the correlation length ξ
which goes to infinity at the percolation-threshold Pc = 1/2.


