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Algorithms for the computation of geodesics on an ellipsoidevolution are given. These provide accurate,
robust, and fast solutions to the direct and inverse geogesblems and they allow differential and integral
properties of geodesics to be computed.
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1. INTRODUCTION calculators; these algorithms are in widespread use totlay.
good summary of Vincenty’s algorithms and the earlier work

The shortest path between two points on the earth, custonin the field is given by Rapp (1993, Chap. 1).
arily treated as an ellipsoid of revolution, is calledj@ode- The goal of this paper is to adapt the geodesic methods
sic. Two geodesic problems are usually considereddttext  of Helmert (1880) and his predecessors to modern comput-
problem of finding the end point of a geodesic given its starters. The current work goes beyond Vincenty in three ways:
ing point, initial azimuth, and length; and theerseproblem (1) The accuracy is increased to match the standard preci-
of finding the shortest path between two given points. Refersion of most computers. This is a relatively straightfordvar
ring to Figd, it can be seen that each problem is equivatent ttask of retaining sufficient terms in the series expansiois a
solving the geodesic triangl¥A B given two sides and their can be achieved at litle computational cost. (2) A solution
included angle (the azimuth at the first poiat, in the case of the inverse problem is given which converges for all pairs
of the direct problem and the longitude differengg,, in the  of points. (Vincenty’s method fails to converge for neanty a
case of the inverse problem). The framework for solvingehestipodal points.) (3) Differential and integral propertigisthe
problems was laid down by Legendre (1806), Ofiani (1806geodesics are computed. The differential properties atfewv
1808, 1810), Bessel (1825), and Helmert (1880). Based ohehavior of nearby geodesics to be determined, which emable
these works, Vincenty (1975a) devised algorithms for swjvi the scales of geodesic projections to be computed witheut re
the geodesic problems suitable for early programmable dessorting to numerical differentiation; crucially, one ofkthlif-
ferential quantities is also used in the solution of the inge
problem. The integral properties provide a method for find-
ing the area of a geodesic polygon, extending the work of
Danielsen((1989).

Section 2 reviews the classical solution of geodesic prob-
lem by means of the auxiliary sphere and provides expan-
sions of the resulting integrals accurate@9f°) (where f
is the flattening of the ellipsoid). These expansions can be
inserted into the solution for the direct geodesic problee: p
sented by, for example, Rapp (1993) to provide accuracy to
machine precision. Sectidh 3 gives the differential propsr
of geodesics reviewing the results|of Helrmert (1880) for the
reduced length and geodesic scale and give the key propertie
of these quantities and appropriate series expansionkte al
FIG. 1 The ellipsoidal triangleVAB. N is the north pole NAF  them to be calculated accurately. Knowledge of the reduced
and NBH are meridians, and\ B is a geodesic of lengthi>. The  |ength enables the solution of the inverse problem by New-
longitude of B relative toA is Ai2; the latitudes ofd and B areé1  ton’s method which is described in Sddt. 4. Newton’s method
andes. EFH is the equator with also lying on the ex_tension ofthe requires a good starting guess and, in the case of nearpoanti
g?Od?S'CA]?;handaoaal.' anda arg the azimuths (in the forward - a1 hoints, this is provided by an approximate solution @f th

irection) of the geodesic d, 4, and5. inverse problem by Helmert (1880), as given in SEkt. 5. The
computation of area between a geodesic and the equator is for
mulated in Secf.]6, extending the worklof Danielsen (1989).
Some details of the implementation and present accuracy and
*Electronic address: charles.karmney@sri.com timing data are discussed in Sddt. 7. As an illustration ef th
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use of these algorithms, Sdct. 8 gives an ellipsoidal gnaeznon
projection in which geodesics are very nearly straight.sThi
provides a convenient way of solving several geodesic prob-
lems.

For the purposes of this paper, it is useful to generalize the
definition of a geodesic. The geodesic curvatur@f an arbi-
trary curve at a poinP on a surface is defined as the curvature
of the projection of the curve onto a plane tangent to the sur-
face atP. All shortest paths on a surface ateaight, defined
ask = 0 at every point on the path. In the rest of this paper,
| use straightness as the defining property of geodesics; thi
allows geodesic lines to be extended indefinitely (beyord th

point at which they cease to be shortest paths). .. FIG. 2 The elementary ellipsoidal triangF P mapped to the aux-
Se\{eral of the results reported here appeared earlier in ifary sphere. NE and NPG are meridiansEG is the equator; and
technical report, Karney (2011). EP is the great circle (i.e., the geodesic). The corresponding
lipsoidal variables are shown in parentheses. Hemepresents an

arbitrary point on the geodesi¢ A B in Fig.[d.

2. BASIC EQUATIONS AND DIRECT PROBLEM

I consider an ellipsoid of revolution with equatorial ragliu See also Egs. (5.4.9) and (5.8.8) of Helimert (1880). Therorig
a, and polar semi-axis, flattening f, third flatteningn, ec-  for s, o, A, andw is the pointE, at which the geodesic crosses

centricitye, and second eccentricity given by the equator in the northward direction, with azimuath The
point P can stand for either end of the geode4iB in Fig.[d,
f=(a=b)/a=1-+V1-¢ (1) with the quantities3, «, o, w, s, and\ acquiring a subscript
n=(a—->b)/(a+b)=f/2-f), (2) 1or2. lalso defines;2 = s — s1 as the length oA B, with
2,92 2N, 2 A12, 012, andwi, defined similarly. (In this papety. is the
e =(a”—b)/a”=f2-f), (3) forward azimuth af3. Several authors use the back azimuth
e? =(a® - b)) /> =€*/(1—¢€). (4)  instead; this is given bys = 7.)

Because Eqs[{7) anll(8) dependan the mapping be-
een the ellipsoid and the auxiliary sphere is not a global
apping of one surface to another; rather the auxiliary sphe
(5) should merely be regarded as a useful mathematical tealniqu
for solving geodesic problems. Similarly, because the ori-
where is the reduced latitude (sometimes called the paragin for A depends on the geodesic, only longitude differences,

As a consequence of the rotational symmetry of the eIIipsoid,[W
geodesics obey a relation foundlby Clairaut (1735), namely m

sin ajg = sin g cos 81 = sin aip cos Bo,

metric latitude), given by e.d.,\12, should be used in converting between longitudes rel-
ative to the prime meridian and
tan 8 = (1 — f) tan . (6) In solving the spherical trigonometrical problems, the fol
The geodesic problems are most easily solved by using ah?wmg equations relating the sides and anglesV@ir are

auxiliary spherewhich allows an exact correspondence to beuserI’

made between a geodesic and a great circle on a sphere. On

. ; . = ph(|cos i sin v si  si S 10
the sphere, the latitudg is replaced by the reduced latitude @0 = phfeosa + me(_)[b,mﬂ' +isinacos f), (10)
3, and azimuthsgy are preserved. From Figl 2, it is clear that o = ph(cosacos 8 + isin f3), (11)
Clairaut’s equationsin ctg = sin « cos 3, is just the sine rule w = ph(coso + isinapsino), (12)
applied to the sidesVE' and NP of the triangleNEP and 8 = ph(|cos ag cos o + isinag| + i cosagsing), (13)
their opposite angles. The third side, the spherical argtlen o = ph(cos g cos o + i sin ag), (14)

o, and its opposite angle, the spherical longitudare related
to the equivalent quantities on the ellipsoid, the distanaed

longitude\, by (Rappl 1993, Egs. (1.28) and (1.170)) where: — =1 andph(z + iy) is the phase of a complex

number [(Olveet al, 2010, §1.9(i)), typically given by the

s 4 — , library function atan2(y, ). Equation [(ID) merely recasts
7= / V14 k?sin® o’ do’ = I1(0), (7)  Eq.[)in aformthatallows it to be evaluated accuratelymvhe
0 - 5 aq is close to%w. The other relations are obtained by applying
A =w— fsinag / —f do’ Napier’s rules of circular parts tE P.
0 1+ (1—=£)V1+Ek2sin®o’ The distance integral, E4.](7), can be expanded in a Fourier
=w— fsinag I3(0), (8) seres
where - - .
n(o) = Ai(o+ Y Cusin2o), (15)

k = ¢ cosayp. 9) =1
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with the coefficients determined by expanding the integral i
a Taylor series. It is advantageous to follow Bessel (18§2p,
and Helmelt/ (1880, Eq. (5.5.1)) and uselefined by

VIFR -1 2

TABLE 1 The parameters for the WGS84 ellipsoid used in the ex-
amples. The column labeled “Eq.” lists the equations usezbin-
pute the corresponding quantities.

€E=— 0 = s 16
VIFEZ+1 1—¢ (16) Qty. Value Eq.
. . . . a 6378137m given
as the expansion parameter. This leads to expansions with f o 1/298.257 223563 given
half as many terms as the corresponding ongg’inThe ex- b 6356752.314 245 m @
pansion can be conveniently carried out to arbitrary orgiex b ¢ 6371007.180 918 m ®0)
computer algebra system such as Maxima (2009) which yields n 0.00167922038638370 (D)
2
B 1 12,14, 1.6 e?  0.00669437999014132 (@)
A== (1436 + g + 55 +--), (A7) 2 0.006739496 74227643 (@)
— 1 3.3 1.5
Cll—_§6+ﬁ6_3—26 +,
Cra = 56+ e’ — g -,
— 1.3 3 /5 . . . . . .
Ciz = —35€ + 355+ Similarly, the integral appearing in the longitude equatio
Ciy = _%64 + 5:;’2 S+ Eqg. (8), can be written as a Fourier series
Cl5z—ﬁ€5+...7 o0
Is{o) = As(o+ Y Corsin2lo). 23
Clﬁz_ﬁeﬁ_y.... (18) 3(0) 3 Z 3l (23)

=1

This extends Eq. (5.5.7) of Helmert (1880) to higher order.Following/Helmelt|(1880), | expand jointly in ande, both
These coefficients may be inserted into Eq. (1.40) of Rappf which areO(f), to give
(1993) using

Aa=1= (3= e (b +dn— )
3

| — 1 3 1,23 1 4
B, = {Al’ forj=0, (19) — (s +mn+n)e — (51 + mn)e
2A,Cy;, forj =2l,withl >0, —1—3855+"' , (24)
where here, and subsequently in E§s] (22) (26), a scriptst = (1 — 1n)e+ (5 — §n) + (g + gn — grn’) €
letter, e.g. 53, is used to stand for Rapp’s coefficients. + (% + 6;4”)64 + 1§_8€5 4o
In the course of solving the direct geodesic problem (where , 3 12\ 2 3 1 3 9y 3
s12 iS given), it is necessary to determimegiven s. Vin- 52 = (15— mn +5n )€ + (51— 3 —an)e
centy solves for iteratively. However, it is simpler to follow + (B + mn)e + g+,
Helmert (1880,85.6) and substitute = bA; 7 into Egs. [) Clan — (5. _ 3 5 .2\.3 3 _ 5 4
and [I5), to obtaim = o + ", Cy; sin 2o; this may be in- 5 (19§ 564n+ w27)€ + (15~ 92m)¢
verted, for example, using Lagrange reversion, to give +t et
. Caa = (513 = 3367)€" + 512"+
o=T+ Z C1, sin 217, (20) Cs5 = %65 4+ (25)
=1
This extends Eq. (5.8.14) of Helmelrt (1880) to higher order.
where These coefficients may be inserted into Eq. (1.56) of Rapp

/ 1 9 3 205 5 (1993) using
011256—56 +@E 4+

_ 5 2 37 4 , 13356 As, forj =0,
012_16 —%E —|—409‘6)6 _|_7 A]Z{ 3 J (26)

16 .
C{?’:%?—f—%ef’—i—--- 7 2A45C5;, forj =2l,withl > 0.
4= % 4 %66 R The equations given in this section allow the direct geode-

Ol — BAST 5 | sic problem to be solved. Givety (and hence5;) and ay
15 7 7680 ’ solve the spherical triangl®E A to giveay, o1, andw; using
Clo = B+ (21)  Egs. [@0),[(IN), and(12). Fing, and ), from Egs. [7) and
(8) together with Eqs[{15) and (23). (Recall that the origin
This extends Eq. (5.6.8) of Helmert (1880) to higher ordersor ) is E in Fig.[1.) Determines, = s; + si» and hence
Th_ese coefficients may be used in Eq. (1.142) of Rapp (199?,}2 using Eq.[[2D). Now solve the spherical triangVé& B to
using give oz, 32 (and hences), andw,, using Eqs.[(14)[(13), and
(@I2). Finally, determine (and\;2) from Egs. [B) and(23).
A numerical example of the solution of the direct problem is
given in Tabld® using the parameters of Tdble 1.

D; =2C},, forj =2l withl > 0. (22)



TABLE 2 A sample direct calculation specified By = 40°, a1 =
30°, ands12 = 10000 km. For equatorial geodesicg{ = 0 and

o1 = im), Eq. [11) is indeterminate; in this case, take= 0. A B
(b)

Qty.  Value Eq. dt, E\ M, dt,
o1 40° given A B
a1 300 given (C) B'
s12 10000000 m given AVJ—’E

Solve triangleNE A m
B 39.905277 146 01° ®) A B
a0 22.553940 202 62° (@0)
71 43.999 153 645 00° @ FIG. 3 The definitions ofni2 and M, are illustrated in (a) and (b).

wi 2032371827837 @ A geometric proof of Eq[{29) is shown in (c); hereB and A’ B’
Determineo, are parallel at3 andB’, BAB' = dai, BB’ = miadag, AA' =

k2 0.005 748 029 628 57 © Ms1miz2das, and finallyAB’ A’ = Ma; daq, from which Eq.[(2D)

€ 0.001 432892204 16 s follows.

Ay 1.001435 46236207 @
Ii(o1) 0.768 315388864 12 s

S1 4883 990.626 232 m @

S2 14883 990.626 232m  s1 + S12

72 133.96266050208°  s2/(bA1)

os  133.921 640830 38° @0)

where K (s) is the Gaussian curvature of the surface. As a
second order, linear, homogeneous differential equatten,
solution can be written as

t(s) = Ata(s) + Btp(s),

Solve triangleNE B
g; li?:ggg 22 351)2 (5)(7)0 %; whereA andB are (infinitesimal) constants angd and: g are
o independent solutions. When considering the geodesic seg-
wa  158.28412147112 (1) . o . .
Determinens ment spanning; < s < s, it is convenient to specify
Az 0.999 28424306 @3) dt a(s)
I3(o1) 0.767 737860 69 @3) ta(s1) =0, =1,
I3(o2) 2.33534322170 @3) ds foms,
A1 20.267 150 380 16° ®) dtp(s)
Az 158.112 050423 93° ®) tp(s1) =1, d =0,
S
Az 137.84490004377° Ay — A s
Solution and to write
&2 41.793 310 205 06° (5)
A1z 137.844 900043 77° mip =ta(s2), Mz =tp(s2).

o2 149.090 169 318 07°

The quantitym, is the reduced lengthof the geodesic
(Christoffel,| 1868). Consider two geodesics which cross at
s = s1 at a small anglelay, Fig[3(a); ats = s, they will

be separated by a distanegs day. Similarly | call M5 the
geodesic scaleConsider two geodesics which are parallel at

Before turning to the inverse problem, | present Gauss’ so® — °! and s_eparated by a small o!lstanjjg, Fig[3(b); at
lution for the differential behavior of geodesics. Oneeiién-  * = 52: they will be separated by a distant# dt; .
tial quantity, the reduced length,,, is needed in the solution Several relations between., and M;, follow from the
of the inverse problem by Newton’s method (S&tt. 4) and aﬁjef'r!mg equation, EgE(??). Th? reduced length obeys areck-
expression for this quantity is given at the end of this secti  Procity relation (Christoffel, 18689), m21 +miz = 0; the
However, because this and other differential quantitidsrai  Y/ronskianis given by
the solution of many geodesic problems, | also discuss their

3. DIFFERENTIAL QUANTITIES

derivation and present some of their properties. W (M2, mi2)(s2) = M2 d(?inu —mi2 d(jiwu =1; (28)
Consider a reference geodesic parametrized by distance 52 52
and a nearby geodesic separated from the reference by iand the derivatives are
finitesimal distance(s). |Gauss|(1828) showed thdt) sat-
isfies the differential equation dms — My, (29)
dSQ ’
2
ddt(f) + K(s)t(s) = 0, (27) dMiy 1= MipMo (30)
s dsa mi2



The constancy of the Wronskian follows by noting that its V14 k2sin? oy
derivative with respect ta@, vanishes; its value is found by 12 = €080 COS 02 + V11 R2sinZor
evaluating it ats; = s;. A geometric proof of Eq.[(29) is !

sin o1 sin oo

given in Fig[3(c) and Eq[(30) then follows from E.[28). _ sinoy cos 02(J(02) = J(01)) (39)
With knowledge of the derivatives, addition rules fai, and V1 + k2sin® oy ’
M- are easily found,
where
mi3 = miaMag + maz Moy, (31)
Mys = MysMos — (1 — MigMay) 22 32 / L
13 = MiaMaz — (1 — M2 21)m12 (32) ) \/m
m
M3y = M3za Moy — (1 — M231Vf32)m—12, (33) =2 /
23 b V1+ k2sin? o’

where points 1, 2, and 3 all lie on the same geodesic. =I(0) — Iz(0). (40)

Geodesics allow concepts from plane geometry to be gen-
eralized to apply to a curved surface. In particular, a gsimde Equation [3D) may be obtained from Eq. (6.9.7) of Helmert
circle may be defined as the curve which is a constant geod¢1880), which giveglm,2/dss; M12 may then be found from
sic distance from a fixed point. Similarly, a geodesic patall Eq. (29) with an interchange of indices. In the sphericaitlim
to a reference curve is the curve which is a constant geodesjt— 0, Egs. [38) and(39) reduce to
distance from that curve. (Thus a circle is a special case of a
parallel obtained in the limit when the reference curve dege miz = asinoi = asin(siz/a),
erates to a point.) Parallels occur naturally when consider Mjs = cos oz = cos(s12/a).
for example, the “12-mile limit” for territorial waters wtin
is the boundary of points lying within 12 nautical miles of a  The integrallz(o) in Eq. (40) may be expanded in a Fourier
coastal state. series in similar fashion td, (o), Eq. [15),

The geodesic curvature of a parallel can be expressed in
terms ofmy5 and M;,. Let point 1 be an arbitrary point on .
the reference curve with geodesic curvatare Point 2 is the (o) = Az (U + Z Caisin 210)’ (41)
corresponding point on the parallel, a fixed distangeaway. =1
The geodesic curvature of the parallel at that point is foungyhere

from Egs.[29) and (30),
Maik1 — (1 — MiaMar)/mas

b
no
I

—

—
I
M

)(1 + %62 + 646 + 2255666 +- )’ (42)

= 1 1.3 15
K2 miaki +M12 (34) C?l - §6+ EE + ﬁe + )

o . Copp = 2+ et 430640

The curvature of a circle is given by the limif — oo, » o, e e
Coz = 55€" + 355€ +

Ko = Ma1/mya. (35) Coy = 5315264 + 5%66 oo,
If the reference curve is a geodesig (— 0), then the curva- Cos = 193567 4+,
ture of its parallel is Che = 5o=ef (43)

—(1 — ]\/[12M21)/(]\/[12m12). (36)

If the reference curve is indented, then the parallel ietetss 4. INVERSE PROBLEM

itself at a sufficiently large distance from the referenceveu
This begins to happen when — oo in Eq. (34).

The results above apply to general surfaces. For a geode
on an ellipsoid of revolution, the Gaussian curvature of the
surface is given by

The inverse problem is intrinsically more complicated than
the direct problem because the given included angle,in
ig.[d, is related to the corresponding angle on the auyiliar
spherew;s via an unknown equatorial azimutty. Thus, the
inverse problem inevitably becomes a root-finding exercise
(1— e sin? )2 1 | tackle this_problem as follows. A;sume that is kn0\_/vn.

02 = P+ R2snZo) (37)  Solve thehybridgeodesic problem: givepy, ¢», anda, find
12 corresponding to the first intersection of the geodesic with

Helmert (188D, Eq. (6.5.1)) solves EG.{27) in this caseve gi the circle of latitudes,. The resulting\;» differs, in general,
) from the given\;5; so adjusiv; using Newton’s method until

mis/b = /1 I the correct\;5 is obtained.
| begin by putting the points in a canonical configuration,
— V1 + k?sin® oy sinoy cos o
— cos oy cosag(J(ag) — J(U1)), (38)

K =

$1 <0, 91 << =01, 0< A <7 (44)
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0 = 0, ) 185 180 FIG. 5 FindingdA:2/da; with ¢; andg, held fixed.
180 ——
(b) in addition to Eq.[(b). Compute;, w, o2, andws using
Egs. [11) and(12). Finally, determing, (and, once conver-
179| gence is achieved;,) as in the solution to the direct problem.
D The behavior of\;, as a function ofy; is shown in Fig[h.
o To apply Newton’s method, an expression fov > /da; is
= 1781 needed. Consider a geodesic with initial azimath If the
azimuth is increased ta; + da; with its length held fixed,
@, =29° then the other end of the geodesic movesnby, da; in a
177 ‘ ‘ ‘ direction %w + as. If the geodesic is extended to intersect
20 120 150 180 the parallekpy once more, the point of intersection moves by
o () miaday/ cosas; see Fig[h. The radius of this parallel is
a cos f2; thus the rate of change of the longitude difference is
FIG. 4 The variation of\12 as a function ofx; for ¢; = —30°, dAio mi2 1
various¢s, and the WGS84 ellipsoid. Part (a) shows for ¢ = ?M = Tm- (46)

0°, £15°, £25°, and=+30°. For|¢2| < |¢1], the curves are strictly
increasing, while for, = +¢1, the curves are non-decreasing with This equation can also be obtained from Eqg. (6.9.8b) of
discontinuities in the slopes at = 90°. An enlargement of the top [Helmert (1880). Equation (#6) becomes indeterminate when
right corner of (a) is shown in (b) with, € [29°,30°] at intervals By = +6; anday = %W, becausen;» andcos as both van-
of 0.2°. ish. In this case, itis necessary todat = %w + ¢ and to take

the limit 6 — 40, which gives

This may be accomplished swapping the end points and the ), \/m

signs of the coordinates if necessary, and the solution may == : (1 F sign(cos 041))7 (47)
I - . da sin B

similarly be transformed to apply to the original points.| Al

geodesics withv; € [0, 7] intersect latitudep, with \;o €  wheresign(cosa;) = —sign(d). A numerical example of

[0, 7r]. Furthermore, the search for solutions can be restrictedolving the inverse geodesic problem by this method is given

to oz € [0, 47, because this corresponds to the first intersecat the end of the next section.
tion with latitudegs. Vincenty (1975a), who uses the iterative methad of Helmert

Meridional (\12 = 0 or 7r) and equatorial¢; = ¢» = 0, (1880, 55.13) to solve the inverse problem, was aware of its
with A2 < (1 — f)n) geodesics are treated as special casedgilure to converge for nearly antipodal points. In an unpub
since the azimuth is then knowmri; = M2 ando; = %w lished reportl(Vincenty, 1975b), he gives a modification of
respectively. The general case is solved by Newton’s methollis method which deals with this case. Unfortunately, this
as outlined above. sometimes requires many thousands of iterations to coayerg

The solution of the hybrid geodesic problem is straightfor-whereas Newton’s method as described here only requires a
ward. FindB; andg3; from Eq. [8), solve foryy anda, from  few iterations.

Eg. (3), takingcos ag > 0 andcosas > 0. In order to com-

puteas accurately, use
5. STARTING POINT FOR NEWTON’'S METHOD

—i—\/cos2 aq cos? B + (cos? By — cos? By)
cos B2

. (45) To complete the solution of the inverse problem a good
starting guess fat; is needed. In most cases, this is provided

cos g =



TABLE 3 First sample inverse calculation specified by = a D
—30.123 45°, ¢ = —30.12344°, and X2 = 0.000 05°. Because
the points are not nearly antipodal, an initial guess¥pis found as-
sumingwi2 = A12/w. However, in this case, the line is short enough
that the error invi2 is negligible at the precision given and the so-
lution of the inverse problem is completed by using = awoio. -yl
More generally, the value af; would be refined using Newton’s
method.
=X/(L+p)
Qty. Value Eq. R4
. B E

¢1 —30.123 45° given -

o2 —30.123 44° given

A12 0.000 05° given ] ) ) o ]

Determinesss FIG. 6 The solution of the astroid equations by similar tgias.

o The scaled coordinates @& are (z,y); O is the point antipodal to
B —30.039990838 210 ® A. The lineBC D, whichis giver(1 b)?/J)Eq[(E4), isFt)he contir?uation of
Bf —30.039980 854 91 © the geodesic fromd B with C' being its intersection with the circle
w 0.997488 47744 @) B = —p1 andD its intersection with the meridiah = \; + 7. The
w12 0.00005012589°  A12/w envelope of lines satisfying’D = 1 gives the astroid, a portion of
o12 0.00004452641°  (ET) which is shown by the curves.
Solution
ai 77.04353354237°  (@9)
Qs 77.04350844913°  (B0) whose extent i€)(f) (Jacobi, 1891, Egs. (16)—(17)). The po-
s12 4.944 208 m awoi2 sition at which a particular geodesic touches this enveispe
given by the conditionn;2 = 0. However elementary meth-
ods can be used to determine the envelope. Consider a geode-
sic leavingA (with 8 < 0) with azimuthey € [17, 7). This
by assuming thatq2 = \12/w, where first intersects the circle of opposite latitude, = — 3, with
012 = w12 = w andas = m — 1. Equation [(B) then gives
2
w = \/1 — 62((COS b1+ cosﬁg)/2) (48) Ao = 7 — frcos Brsinar + O(f2). (52)

and solving for the great circle on the auxiliary spherengsi

(Vincenty, 1975a) Define a plane coordinate systdm, y) centered on the an-

tipodal point whereA = farw cos? 3, is the unit of length,

z1 = cos 1 sin B2 — sin 81 cos B cos w1z €.,
+ 1 cos B sinwya, A
feosfesineiz, MNe=mH—oa, f——fi+ Sy (53)
z9 = —sin B cos B3 + cos By sin B coswio a cos (1 a
+icos fy sinwia, In this coordinate system, Eq4._(52) corresponds to the point
ar = phz, (49) x = —sinag, y = 0and the slope of the geodesicisot ;.
oo = ph 29, (50)  Thus, inthe neighborhood of the antipodal point, the geiedes
012 = ph(sin Sy sin B2 + cos B; cos f2 coswiz + 7 |21]). may be approximated by
(51) T Y

sin o cos o +1=0, (54)
An example of the solution of the inverse problem by this ! !

method is given in Tablel 3. where terms of ordef? have been neglected. Allowing;
This procedure is inadequate for nearly antipodal points betg vary, Eq. [54) defines a family of lines approximating the
cause both the real and imaginary components @ire small  geodesics emanating front. Differentiating this equation
and o, depends very sensitively am,. In the correspond-  with respect tav; and solving the resulting pair of equations
ing situation on the sphere, it is possible to determindy  for ; andy gives the parametric equations for the astroid,
noting that all great circles emanating frofnmeet atO, the  , — _gip3 a1, andy = —cos® ay. Note that, for the or-
point antipodal tad. Thusa; may be determined as the sup- dering of points given by Eq_{#4}), < 0 andy < 0.
plement of the azimuth of the great cird®0 at O; in addi- Givenz andy (i.e., the position of poinB), Eq. [54) may
tion, because3 andO are close, it is possible to approximate pe solved to obtain a first approximationdt. This prescrip-
the sphere, locally, as a plane. . tion is given by Helmer{ (1880, Eq. (7.3.7)) who notes thi th
The situation for an ellipsoid is slightly different becaus resuylts in a quartic which may be found using the constractio
the geodesics emanating frofpinstead of meeting ata point, given in Fig.[6. Here”OD and BED are similar triangles;
form an envelope, centered @t in the shape of aastroid i the (signed) lengttBC is 11, then an equation fqu can be



TABLE 4 Second sample inverse calculation specified¢hy =
—30°, ¢2 = 29.9°, and A2 = 179.8°. Because the points are
nearly antipodal, an initial guess far is found by solving the as-
troid problem. Here. is the positive root of EqL(85). lj = 0, then

TABLE 5 Second sample inverse calculation, continued. Here
)\gg) denotes the desired value of the longitude difference; bewt

method is used to adjust; so thathiz = A§g>. The final value of
aq is used in TablEl6.

aq is given by Eq.[(BF7). The value af; is used in TablEl5.

Qty. Value Eq.
Qty. Value Eq.
- 1 —30° given
o1 —30° given s 929.9° given
¢2 29.9° given o 161.914° Tabled
A12 179.8. given Agg) 179.8° given
Solve the astroid problem Solve triangleNE A
@ -0.382344  (B3) 8 —29.916 747713 24° ®)
y  —0220189 (B3 ao 15.609 397 464 14° ()
A 0231633 (5) o1 —148.812 535665 96° @
Initial guess fora; ) ‘ w1 —170.748 966 961 28° @)
a1 161.914 E9) Solve triangleNEB
B2 29.816 916 421 89° ®)
az 18.067 287 962 31° ®), @8)
o2 31.082 449 768 95° @
found by applying Pythagoras’ theoremd@w D, wa 9.213457611 10° @z
5 9 Determinel;2
z ¥y _ K2 0.006 251 537 916 62 ©
(I4+p)?  w? ’ € 0.001 558 018 267 80 (G}
which can be expanded to give a 4th-order polynomiad,in i; 178’_%@ 1812(5) ggg ggo %
4 3 2 2\ 2 2 2 A12 179.800 255 622 97° A2 — A1
pht+2p” + (1—a2® =y )p” = 2y"pn -y~ =0.  (55) Updatea
Descartes’ rule of signs shows that, fpr#£ 0, there is one 012 0.000 255 622 97° Mz = ALY
positive rootl(Qlveet al,,[2010,51.11(ii)) and this is the solu- J(o1)  —0.009 480409 276 40 (“0)
tion corresponding to the shortest path. This root can bedou J(02) 0.000 313 491 286 30 @0
by standard methods (Olvet all, [2010, §1.11(iii)). Equa- miz 57288.000 110 m @9
tion (58) arises in converting from geocentric to geodetic ¢~ dAiz/dar 0.01088931716115 @8
ordinates, and | use the solution to that problem given by 921 —0.02347465519°  —dX12/(dAiz/den)
Vermeille (2002). The azimuth can then be determined from ar  161.89052534481° a1+ dan
the triangleCOD in Fig.[8, Next iteration
512 0.000 000 006 63°
o = ph(y/u — zx/(l +M)) (56) [e751 161.890 524 736 33°
If y = 0, the solution is found by taking the limijt— 0,
ar = ph(£y/max(0,1 - 2?) —ix). (57) S(0) = c2a + e%a’ cos ag sin o 14 (o), (59)
Tabled4EDb together illustrate the complete solution ofithe  where
verse problem for nearly antipodal points. R canhi-l e
==+ —— (60)
2 2 e
6. AREA is the authalic radius,

The last geodesic algorithm | present is for geodesic areas. 7 t(e?) — t(k?sin’o’) sino’
Here, | extend the method of Danielsen (1989) to higher order Ls(o) = _/ ,  e?— k2sin® o’ 2 do’, (61)
so that the resultis accurate to round-off, and | recasehties "/
into a simple trigonometric sum. t(x) =z + o'+ 1sinh~'/x.

Let S1, be the area of the geodesic quadrilatetalHB in
Fig.[d. Following Danielsen (1989), this can be expressed
the sum of a spherical term and an integral giving the ellip-
soidal correction,

51225(0'2)—5(0'1), (58)

Ii(o) = i Cycos((20 + 1)o),

=0

aExpanding the integrand in powersdt andk? and perform-
Ing the integral gives

(62)


http://dlmf.nist.gov/1.11.ii
http://dlmf.nist.gov/1.11.iii

TABLE 6 Second sample inverse calculation, concluded. Heze

TABLE 7 The calculation of the area between the equator aed th

hybrid problem §:, ¢2, anda; given) is solved. The computed geodesic specified by; = 40°, a; = 30°, andsi2 = 10000 km.
value of A\12 matches that given in the specification of the inverseThis uses intermediate values computed in Table 2.

problem in Tabl&X.

Qty. Value Eq.
o1 —30° given
b2 29.9° given
(e %1 161.890 524 736 33° Table[B
Solve triangleNE A
51 —29.916 747 713 24° ©
ago 15.629 479 665 37° (@)
o1 —148.809 136 917 76° @
wi —170.736 343 780 66° (12)
Solve triangleNE B
Ba 29.816 916 421 89° )
s 18.090 737245 74°  (B), @8)
o2 31.085 834 470 40° @
wa 9.226 028 621 10° (12)
Determines;2 and 12
S1 —16539979.064 227 m @
ED 3449 853.763 383 m @
S12 19989832.827610m sz — s1
A1 —170.602 047 121 48° @
A2 9.197 952 878 52° @
A2 179.800 000 000 00° A2 — A1
Solution
o1 161.890 524 736 33°
[e % 18.090 737 245 74°
S12 19989 832.827 610 m
where
(2 1.2, 4 4 _ 8 /6, 64 /8 128 110
Cao = (§ —15¢° T 105¢ —35¢ T 3365¢ ~ 9009 )
1 1.2, 2 4 16 /6 |, 32 I8\ 1.2
_(2_0_%e + 105¢ — 1155¢ 1 3008¢ )k
1 1.2, 8 4 80 _/6\.4
+(E_@ + 593¢ ~ 9009€ )k
1 12 10 _/4\ 1.6
- (ﬁ —59€¢ " T 1287€ )k
1 1 2\1.8 1 110
+ (15 — )" — k0 4
_ (1 1.2, 2 4 16 /6 32 8\ 1.2
Cn = (m —315¢ T o915€¢ — T0395¢ T 27027 € )k
1 12 4 14 40 16\ 1.4
- (25_2 —378¢ T 2079¢ ~ 77027 € )k
1 12 2 4\ 16
+ (350 — w5¢” + 1€ )k
1 2 2\18 5 110
- (m— 1287 ¢ )k + sk
_ (1 12 4 4 8 1614
Ca = (2100 —3150¢ 1 17335¢ — moas© )k
1 12 2 4\ 1.6
— (1800 — 225¢ "~ Tt &azs€ )k
1 2 12y1.8 1 510
+(1925_50056 )k — sk T
_ (1 12 2 14\ 1.6
Cu = (17640 — 21255¢ 63063 € )k
1 1218 5 .10
- (10780 ~ 12014 € )k + mesak
_ 1 1218 1,10
Cu = (124740 ~ 162162 € )k —smesk T
1 .10
Cis = morga k™ + -+ (63)

Qty. Value Eq.
ap 22.553 940 202 62° Table2
i 30° Table[2
as  149.090 169 318 07° Table2
o1 43.999 153 645 00° Table2
o2 133.921 640 830 38° Table2
k*  0.005748 029 628 57 Table2

Compute area

Ii(o1)  0.47901814520 ©2)

Iy(o2) —0.46191711902 ©2)

S(o1)  21298942.667 15km?*  (B9)

S(o2) 105574 566.089 50km?  (59)
S12 84275623.42235km?  (G8)

An example of the computation ¢f; is given in TabléT.
SummingS;», Eq. [58), over the edges of a geodesic poly-
gon gives the area of the polygon provided that it does not
encircle a pole; if it doe27wc? should be added to the result.
The first term in Eq[(59) contribute$(as — ;) to Sy2. This
is the area of the quadrilaterdlF’HB on a sphere of radius
and it is proportional to its spherical exceas,— a1, the sum
of its interior angles lesgx. It is important that this term be
computed accurately when the edge is short (@n@nd o,
are nearly equal). A suitable identity fap — 4 is given by
Bessell(1825511),
az —ay  sing (B2 + Br) w12
= 1 tan —.
2 cos 5 (B2 — B1) 2

tan

(64)

7. IMPLEMENTATION

The algorithms described in the preceding sections can be
readily converted into working code. The polynomial expan-
sions, Eqgs.[(117)[(18)(21)_(24]. (25). 147).1(43), and)(63
are such that the final results are accuratetg®) which
means that, even fof = %, the truncation error is smaller
than the round-off error when using IEEE double precision
arithmetic (with the fraction of the floating point numbepre
resented by 53 bits). For speed and to minimize round-off
errors, the polynomials should be evaluated with the Horner
method. The parenthetical expressions in Hqd. (B4), (28), a
(63) depend only on the flattening of the ellipsoid and can be
computed once this is known. When determining many points
along a single geodesic, the polynomials need be evaluated
just oncel Clenshaw (1955) summation should be used to sum
the Fourier series, Eq$.(15). {23),141), and (62).

There are several other details to be dealt with in imple-
menting the algorithms: where to apply the two rules for
choosing starting points for Newton’s method, a slight im-
provement to the starting guess Hq.l(56), the convergeice cr
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terion for Newton’s method, how to minimize round-off esor B

in solving the trigonometry problems on the auxiliary sgher

rapidly computing intermediate points on a geodesic bygisin B'
o12 as the metric, etc. | refer the reader to the implementa-

tions of the algorithms in GeographicLib (Karney, 2012) for

possible ways to address these issues. The C++ implemen-

tation has been tested against a large set of geodesicsfor th

WGSB84 ellipsoid; this was generated by continuing the se-

ries expansions t@(f3°) and by solving the direct problem

using with high-precision arithmetic. The round-off esor

in the direct and inverse methods are less than 15 nanome-

ters and the error in the computation of the afgais about Y

0.1m2. Typically, 2 to 4 iterations of Newton’s method are A dt A

required for convergence, although in a tiny fraction ofesas
up to 16 iterations are required. No convergence failures ar
observed. With the C++ implementation compiled with the
g++ compiler, version 4.4.4, and running of.66 GHz Intel
processor, solving the direct geodesic problem t&k&s s,

while the inverse problem tak@s34 us (on average). Several TR ' e
. . the projection is undefined if/;2 < 0. In the spherical limit,
points along a geodesic can be computed at the rdt&ofus this becomes the standard gnomonic projeciios, a tan oz

per point. These times are comparable to those for Vincenty .
algorithms implemented in C++ and run on the same architedSn¥derl 1987, p. 165). The azimuthal scalé/8/, and the

ture: 1.11 us for the direct problem antl. 34 us for the inverse radial scale, found by taking the derivati/ds;  and using

X 5 S )
problem. (But note that Vincenty’s algorithms are less accu Eq. 28), is1/My,. The reverse projection is found by com

. : . utinga; = ph(y + izx), finding s12 using Newton's method
rate than those_glven here and that his method for the mvers\%ith dp/ds1s = 1/M?2, (i.e., the radial scale), and solving the
problem sometimes fails to converge.)

resulting direct geodesic problem.
In order to gauge the usefulness of the ellipsoidal gnomonic

8. ELLIPSOIDAL GNOMONIC PROJECTION projection, consider two points on the eafhand C, map
' these points to the projection, and connect them with agittai

As an application of the differential properties of geode-Iine in this projection_. lf_ this I_ine is_mapped back onto the
sics, | derive a generalization of the gnomonic projection t Surface of the earth, it will deviate slightly from the gesite
the ellipsoid. The gnomonic projection of the sphere has thé?C- T0 lowest order, the maximum deviatibroccurs at the
property that all geodesics on the sphere map to straiggt lin Midpoint of the line segmeri#C; empirically, | find
(Snyder| 1987§22). Such a projection is impossible for an

FIG. 7 The construction of the generalized gnomonic prajecas
the limit of a doubly azimuthal projection.

l2

ellipsoid because it does not have constant Gaussian curva- h=_—(VK -t)t, (66)
ture (Beltrami, 1865§18); nevertheless, a projection can be 32
constructed in which geodesics are very nearly straight.  \yhere/ is the length of the geodesié; is the Gaussian cur-

The spherical gnomonic projection is the limit of the dou-yature VK is evaluated at the center of the projectiénand
bly azimuthal projection of the sphere, wherein the bearing is the perpendicular vector from the center of projection to
from two fixed pointsA and A" to B are preserved, ad’  the geodesic. The deviation in the azimuths at the end points
approachesd (Bugayevskiy and Snycer. 1995). The con-js about4h/I and the length is greater than the geodesic dis-
struction of the generalized gnomonic projection proceedgance by about h?/1. In the case of an ellipsoid of revolution,
in the same way; see Fif] 7. Draw a geodesi®’ such  the curvature is given by differentiating EG.37) with resp
that it is parallel to the geodesidB at A. Its initial sep- o  and dividing by the meridional radius of curvature to give
aration fromAB is sinyd¢; at B, the point closest td3,
the separation becom@d;s sin~ dt (in the limit d¢ — 0). da 4 2 . 9 \5/2 . -
Thus the difference in the azimuths of the geodesids and VE =—7e’(1—€’sin”¢) Peospsinge,  (67)
A'B" at A" is (M12/m12) sinydt, which givesy + v/ = R
7 — (My2/m12)sinydt. Now, solving the planar triangle whereg is a unit vector pointing north. Bounding the mag-
problem withy and+’ as the two base angles gives the dis-nitude ofh, Eq. [66), over all the geodesics whose end points
tanceAB on the projection plane as2/Mjs. lie within a distance of the center of projection, gives (in the
This leads to the following specification for the generalize limitthat f andr are small)
gnomonic projection. Let the center point He for an arbi- 5
trary point B, solve the inverse geodesic problem betwden h < fr (68)
and B; then B projects to the point r— 8a3

(65) The maximum value is attained when the center of projection

= psi , = , = Mio; _ S o
r=psinar, y=peosar, p=mz/M; is at¢p = +45° and the geodesic is running in an east-west
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center of projection; iterate this process ugtff) = O¢-1
which is then the desired intersection point.

The second problem is thaterceptionproblem: given a
geodesic betweeA and B, find the pointO on the geodesic
which is closest to a given poirdf. The solution is similar
to that for the intersection problem; however the intericept
point in the projection is

c-(b—a)(b—a)—(axb-i)ix(b—a).
b —af*

o=

Provided the given points lie within about a quarter merndia
of the intersection or interception points (so that the gaoonim
projection is defined), these algorithms converge quaziidyi

to the exact result.

FIG. 8 The coast line of Europe and North Africa in the ellifgd 9. CONCLUSIONS
gnomonic projection with center &5°N, 12°E) near Venice. The
graticule lines are shown at multiples of°. The two circles are
centered on the projection center with (geodesic) radiiafd km
and 2000 km. The data for the coast lines is taken from GMT
(Wessel and Smith, 2010) at “low” resolution.

The classical geodesic problems entail solving the ellip-
soidal triangleNAB in Fig. [, whose sides and angles are
represented by, @2, s12 anday, as, A12. In the direct prob-
lem ¢1, a1, andsyo are given, while in the inverse problem
¢1, A2, andgs are specified; and the goal in each case is to
direction with the end points at bearingid5° or £135° from  Solve for the remaining side and angles. The algorithmsgive
the center. here provide accurate, robust, and fast solutions to thede p

Others have proposed different generalizations of the gndems; they also allow the differential and integral quaesit
monic projection| Bowring (1997) and Williaim's (1997) give 712, Mi2, M2y, andsSy, to be computed. _

a projection in which great ellipses project to straighesin Much of the work described here involves applying stan-
Letoval'tseV (1963) suggests a projection in which normaldard computational techniques to earlier work. However, at
sections through the center point map to straight lines. Emleast two aspects are novel: (1) This paper presents the first
pirically, | find thath/r is proportional tor /a andr2/a% for ~ cOmplete solution to the inverse geodesic problem. (2) The
these projections. Thus, neither does as well as the proje&llipsoidal gnomonic projection is a new tool to solve vaso
tion derived above (for which//r is proportional ta-3 /a®) at ~ 9€ometrical problems on the ellipsoid. _
preserving the straightness of geodesics. _Furthermore, the packaging of these various geodesic capa-

As an illustration of the properties of the ellipsoidal gno- bilities into a single library is also new. This offers a #jfat-
monic projection, Eq[{85), consider Fig. 8 in which a prejec forward solution of several interesting problems. Two geod
tion of Europe is shown. The two circles are geodesic circle§iC Projections, the azimuthal equidistant projection &l
of radii 1000 km and2000 km. If the geodesic between any Cassini-Soldner projection, are simple to write and their d
two points within one of these circles is estimated by using anain of applicability is not artificially restricted, as widbe
straight line on this figure, the deviation from the true geod the case, for example, if the series expansion for the assin
sic is less than.7 m and28 m, respectively. The maximum Soldner projection were used (Snyder, 198I3); the scales
errors in the end azimuths ard” ands.6” and the maximum ~ for these projections are simply given in termsrof; and
errors in the lengths are onfiy4 m and730 pm. M. Several other problems can be readily tackled with this

The gnomonic projection can be used to solve two geodesiéPrary, e.g., solving other ellipsoidal trigonometry ptems
problems accurately and rapidly. The first is theersection and finding the median line and other mar|t|me boundaries.
problem: given two geodesics betwedrand B and between ~ These and other problems are explored in Kerney (2011). The
C andD, determine the point of intersectiof?, This can be Web page http:/geographiclib.sf.net/geod.html progialedi-
solved as follows. Guess an intersection p@&Mt) and use tional information, including the Maxima (2009) code used t
this as the center of the gnomonic projection; defind, c, ~ Carry out the Taylor expansions and a JavaScript implemen-
d as the positions oft, B, C, D in the projection; find the tation which .aIIows geodesic problems to be solved on many
intersection ofA B andC' D in the projection, i.e., portable devices.

_ (cxd-z)(b—a)—(axb-z)(d-c)
(b—a)x(d—c)-z ’
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