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Algorithms for the computation of geodesics on an ellipsoidof revolution are given. These provide accurate,
robust, and fast solutions to the direct and inverse geodesic problems and they allow differential and integral
properties of geodesics to be computed.
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1. INTRODUCTION

The shortest path between two points on the earth, custom-
arily treated as an ellipsoid of revolution, is called ageode-
sic. Two geodesic problems are usually considered: thedirect
problem of finding the end point of a geodesic given its start-
ing point, initial azimuth, and length; and theinverseproblem
of finding the shortest path between two given points. Refer-
ring to Fig. 1, it can be seen that each problem is equivalent to
solving the geodesic triangleNAB given two sides and their
included angle (the azimuth at the first point,α1, in the case
of the direct problem and the longitude difference,λ12, in the
case of the inverse problem). The framework for solving these
problems was laid down by Legendre (1806), Oriani (1806,
1808, 1810), Bessel (1825), and Helmert (1880). Based on
these works, Vincenty (1975a) devised algorithms for solving
the geodesic problems suitable for early programmable desk
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FIG. 1 The ellipsoidal triangleNAB. N is the north pole,NAF
andNBH are meridians, andAB is a geodesic of lengths12. The
longitude ofB relative toA is λ12; the latitudes ofA andB areφ1

andφ2. EFH is the equator withE also lying on the extension of the
geodesicAB; andα0, α1, andα2 are the azimuths (in the forward
direction) of the geodesic atE, A, andB.

∗Electronic address: charles.karney@sri.com

calculators; these algorithms are in widespread use today.A
good summary of Vincenty’s algorithms and the earlier work
in the field is given by Rapp (1993, Chap. 1).

The goal of this paper is to adapt the geodesic methods
of Helmert (1880) and his predecessors to modern comput-
ers. The current work goes beyond Vincenty in three ways:
(1) The accuracy is increased to match the standard preci-
sion of most computers. This is a relatively straightforward
task of retaining sufficient terms in the series expansions and
can be achieved at little computational cost. (2) A solution
of the inverse problem is given which converges for all pairs
of points. (Vincenty’s method fails to converge for nearly an-
tipodal points.) (3) Differential and integral propertiesof the
geodesics are computed. The differential properties allowthe
behavior of nearby geodesics to be determined, which enables
the scales of geodesic projections to be computed without re-
sorting to numerical differentiation; crucially, one of the dif-
ferential quantities is also used in the solution of the inverse
problem. The integral properties provide a method for find-
ing the area of a geodesic polygon, extending the work of
Danielsen (1989).

Section 2 reviews the classical solution of geodesic prob-
lem by means of the auxiliary sphere and provides expan-
sions of the resulting integrals accurate toO(f6) (wheref
is the flattening of the ellipsoid). These expansions can be
inserted into the solution for the direct geodesic problem pre-
sented by, for example, Rapp (1993) to provide accuracy to
machine precision. Section 3 gives the differential properties
of geodesics reviewing the results of Helmert (1880) for the
reduced length and geodesic scale and give the key properties
of these quantities and appropriate series expansions to allow
them to be calculated accurately. Knowledge of the reduced
length enables the solution of the inverse problem by New-
ton’s method which is described in Sect. 4. Newton’s method
requires a good starting guess and, in the case of nearly antipo-
dal points, this is provided by an approximate solution of the
inverse problem by Helmert (1880), as given in Sect. 5. The
computation of area between a geodesic and the equator is for-
mulated in Sect. 6, extending the work of Danielsen (1989).
Some details of the implementation and present accuracy and
timing data are discussed in Sect. 7. As an illustration of the
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use of these algorithms, Sect. 8 gives an ellipsoidal gnomonic
projection in which geodesics are very nearly straight. This
provides a convenient way of solving several geodesic prob-
lems.

For the purposes of this paper, it is useful to generalize the
definition of a geodesic. The geodesic curvature,κ, of an arbi-
trary curve at a pointP on a surface is defined as the curvature
of the projection of the curve onto a plane tangent to the sur-
face atP . All shortest paths on a surface arestraight, defined
asκ = 0 at every point on the path. In the rest of this paper,
I use straightness as the defining property of geodesics; this
allows geodesic lines to be extended indefinitely (beyond the
point at which they cease to be shortest paths).

Several of the results reported here appeared earlier in a
technical report, Karney (2011).

2. BASIC EQUATIONS AND DIRECT PROBLEM

I consider an ellipsoid of revolution with equatorial radius
a, and polar semi-axisb, flatteningf , third flatteningn, ec-
centricitye, and second eccentricitye′ given by

f = (a− b)/a = 1−
√

1− e2, (1)

n = (a− b)/(a+ b) = f/(2− f), (2)

e2 = (a2 − b2)/a2 = f(2− f), (3)

e′2 = (a2 − b2)/b2 = e2/(1− e2). (4)

As a consequence of the rotational symmetry of the ellipsoid,
geodesics obey a relation found by Clairaut (1735), namely

sinα0 = sinα1 cosβ1 = sinα2 cosβ2, (5)

whereβ is the reduced latitude (sometimes called the para-
metric latitude), given by

tanβ = (1 − f) tanφ. (6)

The geodesic problems are most easily solved by using an
auxiliary spherewhich allows an exact correspondence to be
made between a geodesic and a great circle on a sphere. On
the sphere, the latitudeφ is replaced by the reduced latitude
β, and azimuthsα are preserved. From Fig. 2, it is clear that
Clairaut’s equation,sinα0 = sinα cosβ, is just the sine rule
applied to the sidesNE andNP of the triangleNEP and
their opposite angles. The third side, the spherical arc length
σ, and its opposite angle, the spherical longitudeω, are related
to the equivalent quantities on the ellipsoid, the distances and
longitudeλ, by (Rapp, 1993, Eqs. (1.28) and (1.170))

s

b
=

∫ σ

0

√

1 + k2 sin2 σ′ dσ′ = I1(σ), (7)

λ = ω − f sinα0

∫ σ

0

2− f

1 + (1− f)
√

1 + k2 sin2 σ′

dσ′

= ω − f sinα0 I3(σ), (8)

where

k = e′ cosα0. (9)

σ (s)
α

0

α

E

P

G

N
ω (λ)

β (φ)

FIG. 2 The elementary ellipsoidal triangleNEP mapped to the aux-
iliary sphere.NE andNPG are meridians;EG is the equator; and
EP is the great circle (i.e., the geodesic). The correspondingel-
lipsoidal variables are shown in parentheses. HereP represents an
arbitrary point on the geodesicEAB in Fig. 1.

See also Eqs. (5.4.9) and (5.8.8) of Helmert (1880). The origin
for s, σ, λ, andω is the pointE, at which the geodesic crosses
the equator in the northward direction, with azimuthα0. The
pointP can stand for either end of the geodesicAB in Fig. 1,
with the quantitiesβ, α, σ, ω, s, andλ acquiring a subscript
1 or 2. I also defines12 = s2 − s1 as the length ofAB, with
λ12, σ12, andω12 defined similarly. (In this paper,α2 is the
forward azimuth atB. Several authors use the back azimuth
instead; this is given byα2 ± π.)

Because Eqs. (7) and (8) depend onα0, the mapping be-
tween the ellipsoid and the auxiliary sphere is not a global
mapping of one surface to another; rather the auxiliary sphere
should merely be regarded as a useful mathematical technique
for solving geodesic problems. Similarly, because the ori-
gin forλ depends on the geodesic, only longitude differences,
e.g.,λ12, should be used in converting between longitudes rel-
ative to the prime meridian andλ.

In solving the spherical trigonometrical problems, the fol-
lowing equations relating the sides and angles ofNEP are
useful,

α0 = ph(|cosα+ i sinα sinβ|+ i sinα cosβ), (10)

σ = ph(cosα cosβ + i sinβ), (11)

ω = ph(cosσ + i sinα0 sinσ), (12)

β = ph(|cosα0 cosσ + i sinα0|+ i cosα0 sinσ), (13)

α = ph(cosα0 cosσ + i sinα0), (14)

wherei =
√
−1 andph(x + iy) is the phase of a complex

number (Olveret al., 2010, §1.9(i)), typically given by the
library function atan2(y, x). Equation (10) merely recasts
Eq. (5) in a form that allows it to be evaluated accurately when
α0 is close to12π. The other relations are obtained by applying
Napier’s rules of circular parts toNEP .

The distance integral, Eq. (7), can be expanded in a Fourier
series

I1(σ) = A1

(

σ +

∞
∑

l=1

C1l sin 2lσ
)

, (15)

http://dlmf.nist.gov/1.9.i
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with the coefficients determined by expanding the integral in
a Taylor series. It is advantageous to follow Bessel (1825,§5)
and Helmert (1880, Eq. (5.5.1)) and useǫ, defined by

ǫ =

√
1 + k2 − 1√
1 + k2 + 1

or k =
2
√
ǫ

1− ǫ
, (16)

as the expansion parameter. This leads to expansions with
half as many terms as the corresponding ones ink2. The ex-
pansion can be conveniently carried out to arbitrary order by a
computer algebra system such as Maxima (2009) which yields

A1 = (1− ǫ)−1
(

1 + 1
4ǫ

2 + 1
64ǫ

4 + 1
256ǫ

6 + · · ·
)

, (17)

C11 = − 1
2ǫ +

3
16ǫ

3 − 1
32ǫ

5 + · · · ,
C12 = − 1

16ǫ
2 + 1

32ǫ
4 − 9

2048 ǫ
6 + · · · ,

C13 = − 1
48ǫ

3 + 3
256ǫ

5 + · · · ,
C14 = − 5

512 ǫ
4 + 3

512ǫ
6 + · · · ,

C15 = − 7
1280 ǫ

5 + · · · ,
C16 = − 7

2048 ǫ
6 + · · · . (18)

This extends Eq. (5.5.7) of Helmert (1880) to higher order.
These coefficients may be inserted into Eq. (1.40) of Rapp
(1993) using

Bj =

{

A1, for j = 0,

2A1C1l, for j = 2l, with l > 0,
(19)

where here, and subsequently in Eqs. (22) and (26), a script
letter, e.g.,B, is used to stand for Rapp’s coefficients.

In the course of solving the direct geodesic problem (where
s12 is given), it is necessary to determineσ given s. Vin-
centy solves forσ iteratively. However, it is simpler to follow
Helmert (1880,§5.6) and substitutes = bA1τ into Eqs. (7)
and (15), to obtainτ = σ +

∑

l C1l sin 2lσ; this may be in-
verted, for example, using Lagrange reversion, to give

σ = τ +

∞
∑

l=1

C′

1l sin 2lτ, (20)

where

C′

11 = 1
2ǫ− 9

32ǫ
3 + 205

1536 ǫ
5 + · · · ,

C′

12 = 5
16ǫ

2 − 37
96ǫ

4 + 1335
4096ǫ

6 + · · · ,
C′

13 = 29
96ǫ

3 − 75
128ǫ

5 + · · · ,
C′

14 = 539
1536ǫ

4 − 2391
2560 ǫ

6 + · · · ,
C′

15 = 3467
7680ǫ

5 + · · · ,
C′

16 = 38081
61440ǫ

6 + · · · . (21)

This extends Eq. (5.6.8) of Helmert (1880) to higher order.
These coefficients may be used in Eq. (1.142) of Rapp (1993)
using

Dj = 2C′

1l, for j = 2l, with l > 0. (22)

TABLE 1 The parameters for the WGS84 ellipsoid used in the ex-
amples. The column labeled “Eq.” lists the equations used tocom-
pute the corresponding quantities.

Qty. Value Eq.

a 6 378 137m given
f 1/298.257 223 563 given
b 6 356 752.314 245m (1)
c 6 371 007.180 918m (60)
n 0.001 679 220 386 383 70 (2)
e2 0.006 694 379 990 141 32 (3)
e′2 0.006 739 496 742 276 43 (4)

Similarly, the integral appearing in the longitude equation,
Eq. (8), can be written as a Fourier series

I3(σ) = A3

(

σ +
∞
∑

l=1

C3l sin 2lσ
)

. (23)

Following Helmert (1880), I expand jointly inn andǫ, both
of which areO(f), to give

A3 = 1−
(

1
2 − 1

2n
)

ǫ−
(

1
4 + 1

8n− 3
8n

2
)

ǫ2

−
(

1
16 + 3

16n+ 1
16n

2
)

ǫ3 −
(

3
64 + 1

32n
)

ǫ4

− 3
128 ǫ

5 + · · · , (24)

C31 =
(

1
4 − 1

4n
)

ǫ+
(

1
8 − 1

8n
2
)

ǫ2 +
(

3
64 + 3

64n− 1
64n

2
)

ǫ3

+
(

5
128 + 1

64n
)

ǫ4 + 3
128ǫ

5 + · · · ,
C32 =

(

1
16 − 3

32n+ 1
32n

2
)

ǫ2 +
(

3
64 − 1

32n− 3
64n

2
)

ǫ3

+
(

3
128 + 1

128n
)

ǫ4 + 5
256ǫ

5 + · · · ,
C33 =

(

5
192 − 3

64n+ 5
192n

2
)

ǫ3 +
(

3
128 − 5

192n
)

ǫ4

+ 7
512 ǫ

5 + · · · ,
C34 =

(

7
512 − 7

256n
)

ǫ4 + 7
512ǫ

5 + · · · ,
C35 = 21

2560ǫ
5 + · · · . (25)

This extends Eq. (5.8.14) of Helmert (1880) to higher order.
These coefficients may be inserted into Eq. (1.56) of Rapp
(1993) using

Aj =

{

A3, for j = 0,

2A3C3l, for j = 2l, with l > 0.
(26)

The equations given in this section allow the direct geode-
sic problem to be solved. Givenφ1 (and henceβ1) andα1

solve the spherical triangleNEA to giveα0, σ1, andω1 using
Eqs. (10), (11), and (12). Finds1 andλ1 from Eqs. (7) and
(8) together with Eqs. (15) and (23). (Recall that the origin
for λ is E in Fig. 1.) Determines2 = s1 + s12 and hence
σ2 using Eq. (20). Now solve the spherical triangleNEB to
giveα2, β2 (and henceφ2), andω2, using Eqs. (14), (13), and
(12). Finally, determineλ2 (andλ12) from Eqs. (8) and (23).
A numerical example of the solution of the direct problem is
given in Table 2 using the parameters of Table 1.
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TABLE 2 A sample direct calculation specified byφ1 = 40◦, α1 =
30◦, ands12 = 10 000 km. For equatorial geodesics (φ1 = 0 and
α1 = 1

2
π), Eq. (11) is indeterminate; in this case, takeσ1 = 0.

Qty. Value Eq.

φ1 40◦ given
α1 30◦ given
s12 10 000 000m given

Solve triangleNEA

β1 39.905 277 146 01◦ (6)
α0 22.553 940 202 62◦ (10)
σ1 43.999 153 645 00◦ (11)
ω1 20.323 718 278 37◦ (12)

Determineσ2

k2 0.005 748 029 628 57 (9)
ǫ 0.001 432 892 204 16 (16)
A1 1.001 435 462 362 07 (17)

I1(σ1) 0.768 315 388 864 12 (15)
s1 4 883 990.626 232m (7)
s2 14 883 990.626 232m s1 + s12
τ2 133.962 660 502 08◦ s2/(bA1)

σ2 133.921 640 830 38◦ (20)
Solve triangleNEB

α2 149.090 169 318 07◦ (14)
β2 41.697 718 092 50◦ (13)
ω2 158.284 121 471 12◦ (12)

Determineλ12

A3 0.999 284 243 06 (24)
I3(σ1) 0.767 737 860 69 (23)
I3(σ2) 2.335 343 221 70 (23)
λ1 20.267 150 380 16◦ (8)
λ2 158.112 050 423 93◦ (8)
λ12 137.844 900 043 77◦ λ2 − λ1

Solution
φ2 41.793 310 205 06◦ (6)
λ12 137.844 900 043 77◦

α2 149.090 169 318 07◦

3. DIFFERENTIAL QUANTITIES

Before turning to the inverse problem, I present Gauss’ so-
lution for the differential behavior of geodesics. One differen-
tial quantity, the reduced lengthm12, is needed in the solution
of the inverse problem by Newton’s method (Sect. 4) and an
expression for this quantity is given at the end of this section.
However, because this and other differential quantities aid in
the solution of many geodesic problems, I also discuss their
derivation and present some of their properties.

Consider a reference geodesic parametrized by distances
and a nearby geodesic separated from the reference by in-
finitesimal distancet(s). Gauss (1828) showed thatt(s) sat-
isfies the differential equation

d2t(s)

ds2
+K(s) t(s) = 0, (27)

dα
1 m

12
dα

1

A B

dt
1 M

12
dt

1
A B

A B

A′
B′

(a)

(b)

(c)

FIG. 3 The definitions ofm12 andM12 are illustrated in (a) and (b).
A geometric proof of Eq. (29) is shown in (c); hereAB andA′B′

are parallel atB andB′, BAB′ = dα1, BB′ = m12 dα1, AA′ =
M21m12 dα1, and finallyAB′A′ = M21 dα1, from which Eq. (29)
follows.

whereK(s) is the Gaussian curvature of the surface. As a
second order, linear, homogeneous differential equation,its
solution can be written as

t(s) = AtA(s) +BtB(s),

whereA andB are (infinitesimal) constants andtA andtB are
independent solutions. When considering the geodesic seg-
ment spannings1 ≤ s ≤ s2, it is convenient to specify

tA(s1) = 0,
dtA(s)

ds

∣

∣

∣

∣

s=s1

= 1,

tB(s1) = 1,
dtB(s)

ds

∣

∣

∣

∣

s=s1

= 0,

and to write

m12 = tA(s2), M12 = tB(s2).

The quantitym12 is the reduced lengthof the geodesic
(Christoffel, 1868). Consider two geodesics which cross at
s = s1 at a small angledα1, Fig 3(a); ats = s2, they will
be separated by a distancem12 dα1. Similarly I callM12 the
geodesic scale. Consider two geodesics which are parallel at
s = s1 and separated by a small distancedt1, Fig 3(b); at
s = s2, they will be separated by a distanceM12 dt1.

Several relations betweenm12 andM12 follow from the
defining equation, Eq. (27). The reduced length obeys a reci-
procity relation (Christoffel, 1868,§9), m21 +m12 = 0; the
Wronskian is given by

W (M12,m12)(s2) = M12
dm12

ds2
−m12

dM12

ds2
= 1; (28)

and the derivatives are

dm12

ds2
= M21, (29)

dM12

ds2
= −1−M12M21

m12
. (30)
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The constancy of the Wronskian follows by noting that its
derivative with respect tos2 vanishes; its value is found by
evaluating it ats2 = s1. A geometric proof of Eq. (29) is
given in Fig 3(c) and Eq. (30) then follows from Eq. (28).
With knowledge of the derivatives, addition rules form12 and
M12 are easily found,

m13 = m12M23 +m23M21, (31)

M13 = M12M23 − (1−M12M21)
m23

m12
, (32)

M31 = M32M21 − (1−M23M32)
m12

m23
, (33)

where points 1, 2, and 3 all lie on the same geodesic.
Geodesics allow concepts from plane geometry to be gen-

eralized to apply to a curved surface. In particular, a geodesic
circle may be defined as the curve which is a constant geode-
sic distance from a fixed point. Similarly, a geodesic parallel
to a reference curve is the curve which is a constant geodesic
distance from that curve. (Thus a circle is a special case of a
parallel obtained in the limit when the reference curve degen-
erates to a point.) Parallels occur naturally when considering,
for example, the “12-mile limit” for territorial waters which
is the boundary of points lying within 12 nautical miles of a
coastal state.

The geodesic curvature of a parallel can be expressed in
terms ofm12 andM12. Let point 1 be an arbitrary point on
the reference curve with geodesic curvatureκ1. Point 2 is the
corresponding point on the parallel, a fixed distances12 away.
The geodesic curvature of the parallel at that point is found
from Eqs. (29) and (30),

κ2 =
M21κ1 − (1−M12M21)/m12

m12κ1 +M12
. (34)

The curvature of a circle is given by the limitκ1 → ∞,

κ2 = M21/m12. (35)

If the reference curve is a geodesic (κ1 → 0), then the curva-
ture of its parallel is

κ2 = −(1−M12M21)/(M12m12). (36)

If the reference curve is indented, then the parallel intersects
itself at a sufficiently large distance from the reference curve.
This begins to happen whenκ2 → ∞ in Eq. (34).

The results above apply to general surfaces. For a geodesic
on an ellipsoid of revolution, the Gaussian curvature of the
surface is given by

K =
(1− e2 sin2 φ)2

b2
=

1

b2(1 + k2 sin2 σ)2
. (37)

Helmert (1880, Eq. (6.5.1)) solves Eq. (27) in this case to give

m12/b =
√

1 + k2 sin2 σ2 cosσ1 sinσ2

−
√

1 + k2 sin2 σ1 sinσ1 cosσ2

− cosσ1 cosσ2

(

J(σ2)− J(σ1)
)

, (38)

M12 = cosσ1 cosσ2 +

√

1 + k2 sin2 σ2
√

1 + k2 sin2 σ1

sinσ1 sinσ2

− sinσ1 cosσ2

(

J(σ2)− J(σ1)
)

√

1 + k2 sin2 σ1

, (39)

where

J(σ) =

∫ σ

0

k2 sin2 σ′

√

1 + k2 sin2 σ′

dσ′

=
s

b
−
∫ σ

0

1
√

1 + k2 sin2 σ′

dσ′

= I1(σ)− I2(σ). (40)

Equation (39) may be obtained from Eq. (6.9.7) of Helmert
(1880), which givesdm12/ds2; M12 may then be found from
Eq. (29) with an interchange of indices. In the spherical limit,
f → 0, Eqs. (38) and (39) reduce to

m12 = a sinσ12 = a sin(s12/a),

M12 = cosσ12 = cos(s12/a).

The integralI2(σ) in Eq. (40) may be expanded in a Fourier
series in similar fashion toI1(σ), Eq. (15),

I2(σ) = A2

(

σ +

∞
∑

l=1

C2l sin 2lσ
)

, (41)

where

A2 = (1− ǫ)
(

1 + 1
4ǫ

2 + 9
64ǫ

4 + 25
256 ǫ

6 + · · ·
)

, (42)

C21 = 1
2ǫ+

1
16ǫ

3 + 1
32ǫ

5 + · · · ,
C22 = 3

16ǫ
2 + 1

32ǫ
4 + 35

2048ǫ
6 + · · · ,

C23 = 5
48ǫ

3 + 5
256ǫ

5 + · · · ,
C24 = 35

512ǫ
4 + 7

512ǫ
6 + · · · ,

C25 = 63
1280ǫ

5 + · · · ,
C26 = 77

2048ǫ
6. (43)

4. INVERSE PROBLEM

The inverse problem is intrinsically more complicated than
the direct problem because the given included angle,λ12 in
Fig. 1, is related to the corresponding angle on the auxiliary
sphereω12 via an unknown equatorial azimuthα0. Thus, the
inverse problem inevitably becomes a root-finding exercise.

I tackle this problem as follows. Assume thatα1 is known.
Solve thehybridgeodesic problem: givenφ1, φ2, andα1, find
λ12 corresponding to the first intersection of the geodesic with
the circle of latitudeφ2. The resultingλ12 differs, in general,
from the givenλ12; so adjustα1 using Newton’s method until
the correctλ12 is obtained.

I begin by putting the points in a canonical configuration,

φ1 ≤ 0, φ1 ≤ φ2 ≤ −φ1, 0 ≤ λ12 ≤ π. (44)
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FIG. 4 The variation ofλ12 as a function ofα1 for φ1 = −30◦,
variousφ2, and the WGS84 ellipsoid. Part (a) showsλ12 for φ2 =
0◦, ±15◦, ±25◦, and±30◦. For |φ2| < |φ1|, the curves are strictly
increasing, while forφ2 = ±φ1, the curves are non-decreasing with
discontinuities in the slopes atα1 = 90◦. An enlargement of the top
right corner of (a) is shown in (b) withφ2 ∈ [29◦, 30◦] at intervals
of 0.2◦.

This may be accomplished swapping the end points and the
signs of the coordinates if necessary, and the solution may
similarly be transformed to apply to the original points. All
geodesics withα1 ∈ [0, π] intersect latitudeφ2 with λ12 ∈
[0, π]. Furthermore, the search for solutions can be restricted
to α2 ∈ [0, 12π], because this corresponds to the first intersec-
tion with latitudeφ2.

Meridional (λ12 = 0 or π) and equatorial (φ1 = φ2 = 0,
with λ12 ≤ (1 − f)π) geodesics are treated as special cases,
since the azimuth is then known:α1 = λ12 andα1 = 1

2π
respectively. The general case is solved by Newton’s method
as outlined above.

The solution of the hybrid geodesic problem is straightfor-
ward. Findβ1 andβ2 from Eq. (6), solve forα0 andα2 from
Eq. (5), takingcosα0 > 0 andcosα2 ≥ 0. In order to com-
puteα2 accurately, use

cosα2 =
+
√

cos2 α1 cos2 β1 + (cos2 β2 − cos2 β1)

cosβ2
, (45)

φ = φ
1

α
1

A

α
2

B B′φ = φ
2

dα
1

m
12

dα
1

m
12

dα
1
secα

2

FIG. 5 Findingdλ12/dα1 with φ1 andφ2 held fixed.

in addition to Eq. (5). Computeσ1, ω1, σ2, andω2 using
Eqs. (11) and (12). Finally, determineλ12 (and, once conver-
gence is achieved,s12) as in the solution to the direct problem.
The behavior ofλ12 as a function ofα1 is shown in Fig. 4.

To apply Newton’s method, an expression fordλ12/dα1 is
needed. Consider a geodesic with initial azimuthα1. If the
azimuth is increased toα1 + dα1 with its length held fixed,
then the other end of the geodesic moves bym12 dα1 in a
direction 1

2π + α2. If the geodesic is extended to intersect
the parallelφ2 once more, the point of intersection moves by
m12 dα1/ cosα2; see Fig. 5. The radius of this parallel is
a cosβ2; thus the rate of change of the longitude difference is

dλ12

dα1
=

m12

a

1

cosα2 cosβ2
. (46)

This equation can also be obtained from Eq. (6.9.8b) of
Helmert (1880). Equation (46) becomes indeterminate when
β2 = ±β1 andα1 = 1

2π, becausem12 andcosα2 both van-
ish. In this case, it is necessary to letα1 = 1

2π+ δ and to take
the limit δ → ±0, which gives

dλ12

dα1
= −

√

1− e2 cos2 β1

sinβ1

(

1∓ sign(cosα1)
)

, (47)

wheresign(cosα1) = − sign(δ). A numerical example of
solving the inverse geodesic problem by this method is given
at the end of the next section.

Vincenty (1975a), who uses the iterative method of Helmert
(1880,§5.13) to solve the inverse problem, was aware of its
failure to converge for nearly antipodal points. In an unpub-
lished report (Vincenty, 1975b), he gives a modification of
his method which deals with this case. Unfortunately, this
sometimes requires many thousands of iterations to converge,
whereas Newton’s method as described here only requires a
few iterations.

5. STARTING POINT FOR NEWTON’S METHOD

To complete the solution of the inverse problem a good
starting guess forα1 is needed. In most cases, this is provided
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TABLE 3 First sample inverse calculation specified byφ1 =
−30.123 45◦, φ2 = −30.123 44◦, andλ12 = 0.000 05◦. Because
the points are not nearly antipodal, an initial guess forα1 is found as-
sumingω12 = λ12/w̄. However, in this case, the line is short enough
that the error inω12 is negligible at the precision given and the so-
lution of the inverse problem is completed by usings12 = aw̄σ12.
More generally, the value ofα1 would be refined using Newton’s
method.

Qty. Value Eq.

φ1 −30.123 45◦ given
φ2 −30.123 44◦ given
λ12 0.000 05◦ given

Determineω12

β1 −30.039 990 838 21◦ (6)
β2 −30.039 980 854 91◦ (6)
w̄ 0.997 488 477 44 (48)
ω12 0.000 050 125 89◦ λ12/w̄

σ12 0.000 044 526 41◦ (51)
Solution
α1 77.043 533 542 37◦ (49)
α2 77.043 508 449 13◦ (50)
s12 4.944 208m aw̄σ12

by assuming thatω12 = λ12/w̄, where

w̄ =

√

1− e2
(

(cosβ1 + cosβ2)/2
)2

(48)

and solving for the great circle on the auxiliary sphere, using
(Vincenty, 1975a)

z1 = cosβ1 sinβ2 − sinβ1 cosβ2 cosω12

+ i cosβ2 sinω12,

z2 = − sinβ1 cosβ2 + cosβ1 sinβ2 cosω12

+ i cosβ1 sinω12,

α1 = ph z1, (49)

α2 = ph z2, (50)

σ12 = ph(sinβ1 sinβ2 + cosβ1 cosβ2 cosω12 + i |z1|).
(51)

An example of the solution of the inverse problem by this
method is given in Table 3.

This procedure is inadequate for nearly antipodal points be-
cause both the real and imaginary components ofz1 are small
andα1 depends very sensitively onω12. In the correspond-
ing situation on the sphere, it is possible to determineα1 by
noting that all great circles emanating fromA meet atO, the
point antipodal toA. Thusα1 may be determined as the sup-
plement of the azimuth of the great circleBO atO; in addi-
tion, becauseB andO are close, it is possible to approximate
the sphere, locally, as a plane.

The situation for an ellipsoid is slightly different because
the geodesics emanating fromA, instead of meeting at a point,
form an envelope, centered atO, in the shape of anastroid

OC

B E

D

µ

1

−y/µ

−y
−x/(1+µ)

−x

α
2

α
1

FIG. 6 The solution of the astroid equations by similar triangles.
The scaled coordinates ofB are(x, y); O is the point antipodal to
A. The lineBCD, which is given by Eq. (54), is the continuation of
the geodesic fromAB with C being its intersection with the circle
β = −β1 andD its intersection with the meridianλ = λ1 + π. The
envelope of lines satisfyingCD = 1 gives the astroid, a portion of
which is shown by the curves.

whose extent isO(f) (Jacobi, 1891, Eqs. (16)–(17)). The po-
sition at which a particular geodesic touches this envelopeis
given by the conditionm12 = 0. However elementary meth-
ods can be used to determine the envelope. Consider a geode-
sic leavingA (with β1 ≤ 0) with azimuthα1 ∈ [ 12π, π]. This
first intersects the circle of opposite latitude,β2 = −β1, with
σ12 = ω12 = π andα2 = π − α1. Equation (8) then gives

λ12 = π − fπ cosβ1 sinα1 +O(f2). (52)

Define a plane coordinate system(x, y) centered on the an-
tipodal point where∆ = faπ cos2 β1 is the unit of length,
i.e.,

λ12 = π +
∆

a cosβ1
x, β2 = −β1 +

∆

a
y. (53)

In this coordinate system, Eq. (52) corresponds to the point
x = − sinα1, y = 0 and the slope of the geodesic is− cotα1.
Thus, in the neighborhood of the antipodal point, the geodesic
may be approximated by

x

sinα1
+

y

cosα1
+ 1 = 0, (54)

where terms of orderf2 have been neglected. Allowingα1

to vary, Eq. (54) defines a family of lines approximating the
geodesics emanating fromA. Differentiating this equation
with respect toα1 and solving the resulting pair of equations
for x and y gives the parametric equations for the astroid,
x = − sin3 α1, andy = − cos3 α1. Note that, for the or-
dering of points given by Eq. (44),x ≤ 0 andy ≤ 0.

Givenx andy (i.e., the position of pointB), Eq. (54) may
be solved to obtain a first approximation toα1. This prescrip-
tion is given by Helmert (1880, Eq. (7.3.7)) who notes that this
results in a quartic which may be found using the construction
given in Fig. 6. HereCOD andBED are similar triangles;
if the (signed) lengthBC is µ, then an equation forµ can be
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TABLE 4 Second sample inverse calculation specified byφ1 =
−30◦, φ2 = 29.9◦, andλ12 = 179.8◦. Because the points are
nearly antipodal, an initial guess forα1 is found by solving the as-
troid problem. Hereµ is the positive root of Eq. (55). Ify = 0, then
α1 is given by Eq. (57). The value ofα1 is used in Table 5.

Qty. Value Eq.

φ1 −30◦ given
φ2 29.9◦ given
λ12 179.8◦ given

Solve the astroid problem
x −0.382 344 (53)
y −0.220 189 (53)
µ 0.231 633 (55)

Initial guess forα1

α1 161.914◦ (56)

found by applying Pythagoras’ theorem toCOD,

x2

(1 + µ)2
+

y2

µ2
= 1,

which can be expanded to give a 4th-order polynomial inµ,

µ4 + 2µ3 + (1− x2 − y2)µ2 − 2y2µ− y2 = 0. (55)

Descartes’ rule of signs shows that, fory 6= 0, there is one
positive root (Olveret al., 2010,§1.11(ii)) and this is the solu-
tion corresponding to the shortest path. This root can be found
by standard methods (Olveret al., 2010, §1.11(iii)). Equa-
tion (55) arises in converting from geocentric to geodetic co-
ordinates, and I use the solution to that problem given by
Vermeille (2002). The azimuth can then be determined from
the triangleCOD in Fig. 6,

α1 = ph
(

y/µ− ix/(1 + µ)
)

. (56)

If y = 0, the solution is found by taking the limity → 0,

α1 = ph
(

±
√

max(0, 1− x2)− ix
)

. (57)

Tables 4–6 together illustrate the complete solution of thein-
verse problem for nearly antipodal points.

6. AREA

The last geodesic algorithm I present is for geodesic areas.
Here, I extend the method of Danielsen (1989) to higher order
so that the result is accurate to round-off, and I recast his series
into a simple trigonometric sum.

Let S12 be the area of the geodesic quadrilateralAFHB in
Fig. 1. Following Danielsen (1989), this can be expressed as
the sum of a spherical term and an integral giving the ellip-
soidal correction,

S12 = S(σ2)− S(σ1), (58)

TABLE 5 Second sample inverse calculation, continued. Here
λ
(0)
12 denotes the desired value of the longitude difference; Newton’s

method is used to adjustα1 so thatλ12 = λ
(0)
12 . The final value of

α1 is used in Table 6.

Qty. Value Eq.

φ1 −30◦ given
φ2 29.9◦ given
α1 161.914◦ Table 4
λ
(0)
12 179.8◦ given

Solve triangleNEA

β1 −29.916 747 713 24◦ (6)
α0 15.609 397 464 14◦ (10)
σ1 −148.812 535 665 96◦ (11)
ω1 −170.748 966 961 28◦ (12)

Solve triangleNEB

β2 29.816 916 421 89◦ (6)
α2 18.067 287 962 31◦ (5), (45)
σ2 31.082 449 768 95◦ (11)
ω2 9.213 457 611 10◦ (12)

Determineλ12

k2 0.006 251 537 916 62 (9)
ǫ 0.001 558 018 267 80 (16)
λ1 −170.614 835 524 58◦ (8)
λ2 9.185 420 098 39◦ (8)
λ12 179.800 255 622 97◦ λ2 − λ1

Updateα1

δλ12 0.000 255 622 97◦ λ12 − λ
(0)
12

J(σ1) −0.009 480 409 276 40 (40)
J(σ2) 0.000 313 491 286 30 (40)
m12 57 288.000 110m (38)

dλ12/dα1 0.010 889 317 161 15 (46)
δα1 −0.023 474 655 19◦ −δλ12/(dλ12/dα1)
α1 161.890 525 344 81◦ α1 + δα1

Next iteration
δλ12 0.000 000 006 63◦

α1 161.890 524 736 33◦

S(σ) = c2α+ e2a2 cosα0 sinα0 I4(σ), (59)

where

c2 =
a2

2
+

b2

2

tanh−1 e

e
(60)

is the authalic radius,

I4(σ) = −
∫ σ

π/2

t(e′2)− t(k2 sin2 σ′)

e′2 − k2 sin2 σ′

sinσ′

2
dσ′, (61)

t(x) = x+
√

x−1 + 1 sinh−1√x.

Expanding the integrand in powers ofe′2 andk2 and perform-
ing the integral gives

I4(σ) =

∞
∑

l=0

C4l cos
(

(2l+ 1)σ
)

, (62)

http://dlmf.nist.gov/1.11.ii
http://dlmf.nist.gov/1.11.iii
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TABLE 6 Second sample inverse calculation, concluded. Herethe
hybrid problem (φ1, φ2, andα1 given) is solved. The computed
value ofλ12 matches that given in the specification of the inverse
problem in Table 4.

Qty. Value Eq.

φ1 −30◦ given
φ2 29.9◦ given
α1 161.890 524 736 33◦ Table 5

Solve triangleNEA

β1 −29.916 747 713 24◦ (6)
α0 15.629 479 665 37◦ (10)
σ1 −148.809 136 917 76◦ (11)
ω1 −170.736 343 780 66◦ (12)

Solve triangleNEB

β2 29.816 916 421 89◦ (6)
α2 18.090 737 245 74◦ (5), (45)
σ2 31.085 834 470 40◦ (11)
ω2 9.226 028 621 10◦ (12)

Determines12 andλ12

s1 −16 539 979.064 227m (7)
s2 3 449 853.763 383m (7)
s12 19 989 832.827 610m s2 − s1
λ1 −170.602 047 121 48◦ (8)
λ2 9.197 952 878 52◦ (8)
λ12 179.800 000 000 00◦ λ2 − λ1

Solution
α1 161.890 524 736 33◦

α2 18.090 737 245 74◦

s12 19 989 832.827 610m

where

C40 =
(

2
3 − 1

15e
′2 + 4

105e
′4 − 8

315e
′6 + 64

3465e
′8 − 128

9009e
′10

)

−
(

1
20 − 1

35e
′2 + 2

105e
′4 − 16

1155e
′6 + 32

3003e
′8
)

k2

+
(

1
42 − 1

63e
′2 + 8

693e
′4 − 80

9009e
′6
)

k4

−
(

1
72 − 1

99e
′2 + 10

1287e
′4
)

k6

+
(

1
110 − 1

143e
′2
)

k8 − 1
156k

10 + · · · ,
C41 =

(

1
180 − 1

315e
′2 + 2

945e
′4 − 16

10395e
′6 + 32

27027e
′8
)

k2

−
(

1
252 − 1

378e
′2 + 4

2079e
′4 − 40

27027e
′6
)

k4

+
(

1
360 − 1

495e
′2 + 2

1287e
′4
)

k6

−
(

1
495 − 2

1287e
′2
)

k8 + 5
3276k

10 + · · · ,
C42 =

(

1
2100 − 1

3150e
′2 + 4

17325e
′4 − 8

45045e
′6
)

k4

−
(

1
1800 − 1

2475e
′2 + 2

6435e
′4
)

k6

+
(

1
1925 − 2

5005e
′2
)

k8 − 1
2184k

10 + · · · ,
C43 =

(

1
17640 − 1

24255e
′2 + 2

63063e
′4
)

k6

−
(

1
10780 − 1

14014e
′2
)

k8 + 5
45864k

10 + · · · ,
C44 =

(

1
124740 − 1

162162e
′2
)

k8 − 1
58968k

10 + · · · ,
C45 = 1

792792k
10 + · · · . (63)

TABLE 7 The calculation of the area between the equator and the
geodesic specified byφ1 = 40◦, α1 = 30◦, ands12 = 10 000 km.
This uses intermediate values computed in Table 2.

Qty. Value Eq.

α0 22.553 940 202 62◦ Table 2
α1 30◦ Table 2
α2 149.090 169 318 07◦ Table 2
σ1 43.999 153 645 00◦ Table 2
σ2 133.921 640 830 38◦ Table 2
k2 0.005 748 029 628 57 Table 2

Compute area
I4(σ1) 0.479 018 145 20 (62)
I4(σ2) −0.461 917 119 02 (62)
S(σ1) 21 298 942.667 15 km2 (59)
S(σ2) 105 574 566.089 50 km2 (59)
S12 84 275 623.422 35 km2 (58)

An example of the computation ofS12 is given in Table 7.
SummingS12, Eq. (58), over the edges of a geodesic poly-

gon gives the area of the polygon provided that it does not
encircle a pole; if it does,2πc2 should be added to the result.
The first term in Eq. (59) contributesc2(α2−α1) toS12. This
is the area of the quadrilateralAFHB on a sphere of radiusc
and it is proportional to its spherical excess,α2 −α1, the sum
of its interior angles less2π. It is important that this term be
computed accurately when the edge is short (andα1 andα2

are nearly equal). A suitable identity forα2 − α1 is given by
Bessel (1825,§11),

tan
α2 − α1

2
=

sin 1
2 (β2 + β1)

cos 1
2 (β2 − β1)

tan
ω12

2
. (64)

7. IMPLEMENTATION

The algorithms described in the preceding sections can be
readily converted into working code. The polynomial expan-
sions, Eqs. (17), (18), (21), (24), (25), (42), (43), and (63),
are such that the final results are accurate toO(f6) which
means that, even forf = 1

150 , the truncation error is smaller
than the round-off error when using IEEE double precision
arithmetic (with the fraction of the floating point number rep-
resented by 53 bits). For speed and to minimize round-off
errors, the polynomials should be evaluated with the Horner
method. The parenthetical expressions in Eqs. (24), (25), and
(63) depend only on the flattening of the ellipsoid and can be
computed once this is known. When determining many points
along a single geodesic, the polynomials need be evaluated
just once. Clenshaw (1955) summation should be used to sum
the Fourier series, Eqs. (15), (23), (41), and (62).

There are several other details to be dealt with in imple-
menting the algorithms: where to apply the two rules for
choosing starting points for Newton’s method, a slight im-
provement to the starting guess Eq. (56), the convergence cri-
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terion for Newton’s method, how to minimize round-off errors
in solving the trigonometry problems on the auxiliary sphere,
rapidly computing intermediate points on a geodesic by using
σ12 as the metric, etc. I refer the reader to the implementa-
tions of the algorithms in GeographicLib (Karney, 2012) for
possible ways to address these issues. The C++ implemen-
tation has been tested against a large set of geodesics for the
WGS84 ellipsoid; this was generated by continuing the se-
ries expansions toO(f30) and by solving the direct problem
using with high-precision arithmetic. The round-off errors
in the direct and inverse methods are less than 15 nanome-
ters and the error in the computation of the areaS12 is about
0.1m2. Typically, 2 to 4 iterations of Newton’s method are
required for convergence, although in a tiny fraction of cases
up to 16 iterations are required. No convergence failures are
observed. With the C++ implementation compiled with the
g++ compiler, version 4.4.4, and running on a2.66GHz Intel
processor, solving the direct geodesic problem takes0.88µs,
while the inverse problem takes2.34µs (on average). Several
points along a geodesic can be computed at the rate of0.37µs
per point. These times are comparable to those for Vincenty’s
algorithms implemented in C++ and run on the same architec-
ture:1.11µs for the direct problem and1.34µs for the inverse
problem. (But note that Vincenty’s algorithms are less accu-
rate than those given here and that his method for the inverse
problem sometimes fails to converge.)

8. ELLIPSOIDAL GNOMONIC PROJECTION

As an application of the differential properties of geode-
sics, I derive a generalization of the gnomonic projection to
the ellipsoid. The gnomonic projection of the sphere has the
property that all geodesics on the sphere map to straight lines
(Snyder, 1987,§22). Such a projection is impossible for an
ellipsoid because it does not have constant Gaussian curva-
ture (Beltrami, 1865,§18); nevertheless, a projection can be
constructed in which geodesics are very nearly straight.

The spherical gnomonic projection is the limit of the dou-
bly azimuthal projection of the sphere, wherein the bearings
from two fixed pointsA andA′ to B are preserved, asA′

approachesA (Bugayevskiy and Snyder, 1995). The con-
struction of the generalized gnomonic projection proceeds
in the same way; see Fig. 7. Draw a geodesicA′B′ such
that it is parallel to the geodesicAB at A. Its initial sep-
aration fromAB is sin γ dt; at B′, the point closest toB,
the separation becomesM12 sin γ dt (in the limit dt → 0).
Thus the difference in the azimuths of the geodesicsA′B and
A′B′ at A′ is (M12/m12) sin γ dt, which givesγ + γ′ =
π − (M12/m12) sin γ dt. Now, solving the planar triangle
problem withγ andγ′ as the two base angles gives the dis-
tanceAB on the projection plane asm12/M12.

This leads to the following specification for the generalized
gnomonic projection. Let the center point beA; for an arbi-
trary pointB, solve the inverse geodesic problem betweenA
andB; thenB projects to the point

x = ρ sinα1, y = ρ cosα1, ρ = m12/M12; (65)

A A′

B

B′

γ γγ′
dt

FIG. 7 The construction of the generalized gnomonic projection as
the limit of a doubly azimuthal projection.

the projection is undefined ifM12 ≤ 0. In the spherical limit,
this becomes the standard gnomonic projection,ρ = a tanσ12

(Snyder, 1987, p. 165). The azimuthal scale is1/M12 and the
radial scale, found by taking the derivativedρ/ds12 and using
Eq. (28), is1/M2

12. The reverse projection is found by com-
putingα1 = ph(y + ix), findings12 using Newton’s method
with dρ/ds12 = 1/M2

12 (i.e., the radial scale), and solving the
resulting direct geodesic problem.

In order to gauge the usefulness of the ellipsoidal gnomonic
projection, consider two points on the earthB andC, map
these points to the projection, and connect them with a straight
line in this projection. If this line is mapped back onto the
surface of the earth, it will deviate slightly from the geodesic
BC. To lowest order, the maximum deviationh occurs at the
midpoint of the line segmentBC; empirically, I find

h =
l2

32
(∇K · t)t, (66)

wherel is the length of the geodesic,K is the Gaussian cur-
vature,∇K is evaluated at the center of the projectionA, and
t is the perpendicular vector from the center of projection to
the geodesic. The deviation in the azimuths at the end points
is about4h/l and the length is greater than the geodesic dis-
tance by about83h

2/l. In the case of an ellipsoid of revolution,
the curvature is given by differentiating Eq. (37) with respect
toφ and dividing by the meridional radius of curvature to give

∇K = −4a

b4
e2(1− e2 sin2 φ)5/2 cosφ sinφ φ̂, (67)

whereφ̂ is a unit vector pointing north. Bounding the mag-
nitude ofh, Eq. (66), over all the geodesics whose end points
lie within a distancer of the center of projection, gives (in the
limit that f andr are small)

h

r
≤ f

8

r3

a3
. (68)

The maximum value is attained when the center of projection
is atφ = ±45◦ and the geodesic is running in an east-west
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1000 km

2000 km

FIG. 8 The coast line of Europe and North Africa in the ellipsoidal
gnomonic projection with center at(45◦N, 12◦E) near Venice. The
graticule lines are shown at multiples of10◦. The two circles are
centered on the projection center with (geodesic) radii of1000 km
and 2000 km. The data for the coast lines is taken from GMT
(Wessel and Smith, 2010) at “low” resolution.

direction with the end points at bearings±45◦ or±135◦ from
the center.

Others have proposed different generalizations of the gno-
monic projection. Bowring (1997) and Williams (1997) give
a projection in which great ellipses project to straight lines;
Letoval’tsev (1963) suggests a projection in which normal
sections through the center point map to straight lines. Em-
pirically, I find thath/r is proportional tor/a andr2/a2 for
these projections. Thus, neither does as well as the projec-
tion derived above (for whichh/r is proportional tor3/a3) at
preserving the straightness of geodesics.

As an illustration of the properties of the ellipsoidal gno-
monic projection, Eq. (65), consider Fig. 8 in which a projec-
tion of Europe is shown. The two circles are geodesic circles
of radii 1000 km and2000 km. If the geodesic between any
two points within one of these circles is estimated by using a
straight line on this figure, the deviation from the true geode-
sic is less than1.7m and28m, respectively. The maximum
errors in the end azimuths are1.1′′ and8.6′′ and the maximum
errors in the lengths are only5.4µm and730µm.

The gnomonic projection can be used to solve two geodesic
problems accurately and rapidly. The first is theintersection
problem: given two geodesics betweenA andB and between
C andD, determine the point of intersection,O. This can be
solved as follows. Guess an intersection pointO(0) and use
this as the center of the gnomonic projection; definea, b, c,
d as the positions ofA, B, C, D in the projection; find the
intersection ofAB andCD in the projection, i.e.,

o =
(c× d · ẑ)(b− a)− (a × b · ẑ)(d− c)

(b− a)× (d− c) · ẑ , (69)

wherê indicates a unit vector (̂a = a/a) and ẑ = x̂ × ŷ is
in the direction perpendicular to the projection plane. Project
o back to geographic coordinatesO(1) and use this as a new

center of projection; iterate this process untilO(i) = O(i−1)

which is then the desired intersection point.
The second problem is theinterceptionproblem: given a

geodesic betweenA andB, find the pointO on the geodesic
which is closest to a given pointC. The solution is similar
to that for the intersection problem; however the interception
point in the projection is

o =
c · (b− a)(b− a)− (a × b · ẑ)ẑ× (b− a)

|b− a|2
.

Provided the given points lie within about a quarter meridian
of the intersection or interception points (so that the gnomonic
projection is defined), these algorithms converge quadratically
to the exact result.

9. CONCLUSIONS

The classical geodesic problems entail solving the ellip-
soidal triangleNAB in Fig. 1, whose sides and angles are
represented byφ1, φ2, s12 andα1, α2, λ12. In the direct prob-
lem φ1, α1, ands12 are given, while in the inverse problem
φ1, λ12, andφ2 are specified; and the goal in each case is to
solve for the remaining side and angles. The algorithms given
here provide accurate, robust, and fast solutions to these prob-
lems; they also allow the differential and integral quantities
m12, M12, M21, andS12 to be computed.

Much of the work described here involves applying stan-
dard computational techniques to earlier work. However, at
least two aspects are novel: (1) This paper presents the first
complete solution to the inverse geodesic problem. (2) The
ellipsoidal gnomonic projection is a new tool to solve various
geometrical problems on the ellipsoid.

Furthermore, the packaging of these various geodesic capa-
bilities into a single library is also new. This offers a straight-
forward solution of several interesting problems. Two geode-
sic projections, the azimuthal equidistant projection andthe
Cassini-Soldner projection, are simple to write and their do-
main of applicability is not artificially restricted, as would be
the case, for example, if the series expansion for the Cassini-
Soldner projection were used (Snyder, 1987,§13); the scales
for these projections are simply given in terms ofm12 and
M12. Several other problems can be readily tackled with this
library, e.g., solving other ellipsoidal trigonometry problems
and finding the median line and other maritime boundaries.
These and other problems are explored in Karney (2011). The
web page http://geographiclib.sf.net/geod.html provides addi-
tional information, including the Maxima (2009) code used to
carry out the Taylor expansions and a JavaScript implemen-
tation which allows geodesic problems to be solved on many
portable devices.
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rieen der Höheren Geodäsie, volume 1 (Teubner, Leipzig), http://
books.google.com/books?id=qt2CAAAAIAAJ, translated into
English by Aeronautical Chart and Information Center (St. Louis,
1964) asMathematical and Physical Theories of Higher Geodesy,
Part 1, http://geographiclib.sf.net/geodesic-papers/helmert80-en.
html.

C. G. J. Jacobi, 1891,̈Uber die Curve, welche alle von einem
Punkte ausgehenden geodätischen Linien eines Rotationsellip-
soides berührt, in K. T. W. Weierstrass, editor,Gesammelte
Werke, volume 7, pp. 72–87 (Reimer, Berlin), op. post., com-

pleted by F. H. A. Wangerin, http://books.google.com/books?id=
09tAAAAMAAJ&pg=PA72.

C. F. F. Karney, 2011,Geodesics on an ellipsoid of revolution, Tech-
nical report, SRI International, E-print arXiv:1102.1215v1.

—, 2012,GeographicLib, version 1.20, http://geographiclib.sf.net.
A. M. Legendre, 1806,Analyse des triangles tracés sur la surface
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