Astronomical Navigation - Noon-Fix for Latitude and Longitude (years 2020-2040)

Ships position around noon (locally) by sextant and noon-fix for noon-sight latitude and noon-sight longitude. Time needed about 2 hours. Precision only +- 3 naut.miles, in N/S and E/W-direction due to longtime prediction 2040. The tabulated calculation followed Jean Meeus, Astron. Algorithms, p.165.: diff. +-10 arcseconds against VSOP87. Equipment: Sextant, clock (running on UTC), this sheet of paper and a pencil. Ship should not change its position! Example: 5. Apr. 2022, estimated position: 39°10°N, -014°10° W, noon around 13 hours UTC (sun at highest altitude).

Measuring noon-sight longitude and noon-sight latitude.

In total three times T1,T2,T3 must be measured, and two sextant-angles S1,S2 noted.

About one hour before local noon: Take declination-value from **Tables DEC** for 5. April **2022** (note year!): +6° 11′. Guess sextant-angle S1 like this: 90°- approx.Latitude + DEC=90°-39°+6°=57°. Adjust sextant to this angle. Search horizon, until the sun comes into mirrors sight. Turn drum of sextant until lower rim of sun touches horizon. Note the time **precisely** by second (e.g. **T1=UTC 12:12:41**). Read sextant-angle S1 and **note it (e.g. S1= 54°53°)**.

Now adjust the drum about every 5 min to keep the sun touching the horizon. When no further changes occur, wait for 2 min (= noon Latitude-fix), read sextant-angle and note this as angle S2 (culmination-angle S2= $56^{\circ}52$). Also note the time (T2=about 13:00h) to estimate, when approximately the sun again will sink down to the previous altitude-angle S1 (in our case about 13:45h, as a guess).

Now reset the sextant back to angle **S1=54°53′**. Check the sun regularly at fixed sextant-angle **S1**. As soon as the sun touches the horizon again at this angle **S1**, **take notice** of the precise time **(T3= UTC 13:47:25)**. (Height correction, below: If height-of-eye is 10m instead of 2m, reduce the height-correction **(13′, etc.)** below by 3′. Linear interpolation for different height-of-eye). Then calculation as follows:

CALCULATION for LATITUDE NOON-FIX:

Sextant-reading (angle S2)	56°52'
Index-error of sextant (check individually!)	+ 02'
Height-correction at 2m height of eye	+ 13' (for angle from: 20°=>11', 30°=>12', 50°=>13', until 80°=>13')
Sextant-altitude, cleaned, therefore:	=57°07′
Zenith-height (Def.: 90°)	89°60'
subtract sextant-altitude:	-57°07'
Zenith-distance accordingly:	=32°53' *)
Declination on 5.April 22 (Table DEC)	+ 6°11′ N
Sum:	= 38°64′ N
LATITUDE noon-fix:	= 39°04' Nord

CALCULATION for LONGITUDE NOON-FIX:

For two instances of time (T1=12:12:41) and (T3=13:47:25) we have the same sextant-reading (angle S1=54°53'), before and after the sun reaches maximal height (=culmination). Time of culmination then must be in the middle: First recording of time T1 (angle S1) 12h 12m 41s Time T3 (sextant angle again S1) +13h 47m 25s simply added: = 25h 59m 66sor better notation: 26h 00m 06s (Attention when adding secs or mins!) divide by 2 = culmination-time (exact) =13h 00m 03s minus 12h (west of Greenwich [east: +12]!) - 12h 00m 00s Time rel. to Greenwich: =01h 00m 03s **00h 59m 63s** (1h = 60m)= different notation (!): GHA-correction on 5.4. (Table GHA) 02m 41s (Attention when subtracting sec or mins!) True time at ships position = 00h 57m 22s (West)

```
Conversion of this time into degrees of longitude: 1h=15°, 1m=15', 1s=15" [Time-min= m, Angle-min= ']
                       00° =
And so: 00h =
                                       00^{\circ}
                                                                   (see also auxiliary table)
                       855' =
                                       14° 15'
                                                (855 / 60 = 14,25)
       57m
                       330" =
                                           6'
                                               (330 / 60 = 5,5)
       22s
              =
LONGITUDE =
                                       14° 21' WEST
```

Resulting position of ship in Latitude and Longitude at 13:00:03 UTC accordingly:

Years = 2020 ... 2040
GHA - Greenwich Hour Angle, Zeitgleichung, 12.00 UTC
in Minutes M and Seconds S (=below the Minutes)

Umrechnung Zeit (Stunden, Minuten) in Winkel (Grad, arcmin,arcsec)

	h.	0	h.	0	m.,	0	,	m.	0	'	s.	1	"	S.	1	"
	1=	15	13:	= 195	1=	= 0	15	16=	- 4	00		=0	15	16=	4	00
	2	30	14	210	2	0	30	17	4	15	2	0	30		4	15
	3	45	15	225	3	0	45	18	4	30	3	0	45		4	30
	5		16	240		1	00	19	4	45	4	1	00		4	45
	5	75	17	255	5	1	15	20	5	00	5	1	15		5	00
	6 7	90	18	270	6	1	30	24	6	00	6	1	30		6	00
		105	19	285	7	1	45	28	7	00	7	1		28	7	00
	8	120	20	300	8	2	00	32	8	00	8	2	00		8	00
		135	21	315	9	2	15	36	9	00	9	2	15		9	00
1	0	150	22	330	10		30		10	00	10	2	30		10	00
	1	165	23	345	11	2	45	44	11		11	2	45		11	00
1	2	180	24	360	12	3	00	48	12	00	12	3	00			00
					13	3	15	52	13	00		3	15		13	00
				- 1	14	3				00		3	30		14	
					15	3	45			.00		3	45		15	00

^{*)} Latitude and declination bear a sign. Adding a negative number to a positive number is a subtraction! Southern hemisphere: Zenith-distance is to be taken negative!

YEARS= 2020 2024 2028 2032 2036 2040 DEC = Declination, 12.00 UTC in decrees d and minutes(= below the decrees) YEARS= 2021 2025 2029 2033 2037 DEC = Declination, 12.00 UTC

in degrees d and minutes (= below the degrees)

Declination = degrees: 6 minutes: 22

Declination = degrees: 6 minutes: 17

YEARS= 2022 2026 2030 2034 2038
DEC = Declination, 12.00 UTC
in decrees d and minutes = below the decrees)

YEARS= 2023 2027 2031 2035 2039 DEC = Declination, 12.00 UTC in degrees d and minutes (= below the degrees)

Declination = degrees: 6 minutes: 6